scholarly journals Development and Characterization of Nanoparticles for the Delivery of Gemcitabine Hydrochloride

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Rekha Khaira ◽  
Jyoti Sharma ◽  
Vinay Saini

Gemcitabine (2,2-difluorodeoxycytidine) is a deoxycytidine analog, currently being used as a first-choice drug in pancreatic metastatic cancer. Gemcitabine is administered weekly as 30-minute infusion with starting dose ranging from 800 to 1250 mg/m2. The aim of the present work was to develop starch nanoparticles (NPs) for the delivery of gemcitabine hydrochloride that could reduce its dose related side effects and may prolong its retention time (24 hrs) for the treatment of pancreatic cancer. Nanoparticles were prepared by emulsification diffusion method with slight modifications. Size and morphology of nanoparticles were investigated. Particles were spherical in shape with slightly rough surfaces. Particle size and polydispersity index were 231.4 nm and 1.0, respectively while zeta potential of blank NPs and drug loaded NPs were found to be −11.8 mV and −9.55 mV, respectively. Percent entrapment efficiency of different formulations was around∼54% to 65%.In vitrorelease profile studies showed that around 70%–83% of drug was released from different formulations. Anticancerous cell line studies were also performed in human pancreatic cell lines (MIA-PA-CA-2).

Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


2021 ◽  
Vol 15 (5) ◽  
pp. 8-12
Author(s):  
Kajal Tomer ◽  
Dilip Kumar Gupta

The drug can be released in a controlled manner using a gastro retentive dosage type. The main focus on the novel technological advances in the floating drug delivery method for gastric retention. The preparation of diacerein micro balloon is done by solvent diffusion method, using acrylic polymer like Eudragit S 100 and HPMC K4 M. The various evaluation of the prepared floating microsphere like its % yield, drug entrapment efficiency, particle size in-vitro dissolution, buoyancy, was studied. The floating microsphere was found to be spherical and range from 85 μm - 192 μm. Whereas the buoyancy in gastric mucosa between the range 30.5% -49.5%. The % yield and % entrapment efficiency were found under the range 61% - 82% and 45.1–84.1% respectively. The microsphere showed favorable in-vitro dissolution 76.8 to 94.45. The optimized formulation was found based on evaluation of floating micro-balloons, Formulation (M3E3) showed the best result as particle size 192 μm, DDE 84.1%, in vitro drug release 94.5%, and in vitro buoyancy 49.5%. all the formulations showed controlled release up to 24 hours.


Author(s):  
ARTI MAJUMDAR ◽  
NIDHI DUBEY ◽  
NITIN DUBEY

Objective: The aim of the present study is to develop docetaxel-loaded nano liquid crystals (NLCs) to enhanced and effective delivery of the drug to the skin cancer. Methods: NLCs bearing docetaxel were prepared by an emulsification solvent diffusion method. The formulated NLCs were characterized for average particle size, polydispersity index (PDI) Zeta potential, entrapment efficiency and in vitro drug release study. The prepared formulations were studied for it's in vitro cell line and cell uptake study. Results: It was revealed that the average size of NLCs was found 178.3±5.07, PDI was 0.189, percent entrapment efficiency was found 71.3±2.49 and Zeta potential was found-17.3±2.4. In vitro release determined by Franz diffusion cell was found 61.6±3.2% after 72 hr. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that Docetaxel loaded NLCs were giving more cytotoxicity as compared to the plain drug. The cell uptake study was found enhanced uptake of fluorescein isothiocyanate (FITC) loaded NLCs in comparison to plain FITC. Docetaxel and docetaxel-loaded NLCs showed 28.3±0.3 and 39.3±1.3 growth inhibition respectively after 48h upon incubation at 0.5 µg/ml concentration (p<0.05). Conclusion: The result of the studies was concluded that NLCs can be used as impending drug delivery system which may enhance the drug uptake and maintain the drug level for longer period of time and it is potential carrier system which can be used for the treatment of skin diseases like cancer.


Author(s):  
Kanchan Sonker ◽  
Randhir Gupta ◽  
Jovita Kanoujia ◽  
Viney Chawla ◽  
Manisha Pandey ◽  
...  

Microspheres of ethyl cellulose containing prednisolone sodium phosphate were prepared by double emulsion solvent diffusion method. A statistical design was used to study and optimize the variables that affect the preparation of microspheres. The experimental results showed that the drug: polymer ratio, stirring speed, concentration of surfactant, and volume of processing media played an important role in the formulation of microspheres. The prepared microspheres were characterized on the basis of particle size, scanning electron microscopy, entrapment efficiency and <italic>in vitro</italic> release. Taguchi experimental design helped to reduce the number of experiments. Optimized formulation exhibited Higuchi square root kinetics displaying diffusion from the microspheres as the main mechanism for drug release.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
ALAA KHATTAB ◽  
Abdulhakim Nattouf

AbstractThe aim of the present study was to formulate clindamycin (CLN) as a microsponge based gel to release the drug in a controlled manner and reduce the side effects in the treatment of acne. Since this method requires poor water solubility of the drug to be loaded in particles, therefore, conversion of the hydrochloride salt to free base was done. By using an emulsion solvent diffusion method, we made six different formulations of microsponges containing CLN-free base by changing the proportions of polymer, emulsifier and the pH of the external phase. These formulations were studied for physical characterization and for drug- polymer interactions. The physical characterization showed that microsponge formulations coded by C5, C6 resulted in a better loading efficiency and production yield and their particle size was less than 30 µm. Scanning electron microscopy images showed the microsponges porous and spherical. C5, C6 microsponge formulation was prepared as gel in Carbopol and in vitro evaluated. The microsponge formulation gel C8 was found to be optimized. C8 released 90.38% of drug over 12 h and showed viscosity 20,157 ± 38 cp, pH of 6.3 ± 0.09 and drug content of 99.64 ± 0.04%. Fourier transform infrared spectroscopy and differential scanning calorimetry confirmed no significant interactions between excipients and drug.


Author(s):  
Y. SARAH SUJITHA ◽  
Y. INDIRA MUZIB

Objective: Quercetin is therapeutically hampered because of its poor solubility. The present investigation was aimed to prepare quercetin loaded nanosponges topical gel to enhance the solubility and efficacy of the drug. Methods: Quercetin nanosponges were prepared by emulsion solvent diffusion method. Developed nanosponges optimized by particle size, SEM, entrapment efficiency, FT-IR, DSC, P-XRD, In vitro studies. The optimized formulation of nanosponges was loaded into a topical gel and it was characterized by ex-vivo, in vivo Pharmacodynamic and kinetic studies. Results: The particle size and zeta potential of optimized nanosponges were found to be 188.3 nm and-0.1mV. Surface morphology was studied using SEM Analysis which showed tiny sponge-like structure and entrapment efficiency was found to be 96.5 %. In vitro drug release of optimized nanosponges was found to be 98.6% for 7hours. Optimized nanosponges entrapped gel was prepared by using carbopol 934 and hydroxypropyl methylcellulose as gelling agents. The prepared nanogels were homogenous and ex-vivo skin permeation studies of the optimized nanosponges gel was found to be 98.1% for 5 h, quercetin loaded nanosponges has shown higher skin permeation efficiency (18.4µg/cm2±2.1) compared to pure quercetin gel. The pharmacokinetic and pharmacodynamic studies showed that the quercetin loaded nanosponges has shown more effective when compared to marketed formulation. Conclusion: Quercetin loaded nanosponges gel has shown a significant increase in activity (p<0.05) compared to the marketed formulation (Voveran Emulgel).


Author(s):  
RAHUL S. SOLUNKE ◽  
UDAY R. BORGE ◽  
KRISHNA MURTHY ◽  
MADHURI T. DESHMUKH ◽  
RAJKUMAR V. SHETE

Objective: The objective of the present study was to develop and characterize an optimal stable nanosponges of Gliclazide (GLZ) by using the emulsion solvent diffusion method and aimed to increase its bioavailability and release the drug in sustained and controlled manner. Methods: The GLZ nanosponge was prepared by emulsion solvent diffusion method using different drug-polymer ratios (1:1 to 1:5) Eudragit S100 is used as a polymer. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) estimated the compatibility of GLZ with polymer. All formulations evaluated for production yield, entrapment efficiency, in vitro drug release, scanning electron microscopy (SEM) and stability studies. Results: The DSC and FTIR Studies revealed that no interaction between drug and polymer. The Production yield of all batches in the range of 73.8±0.30 to 85.6±0.32. Batch F3 showed the highest production yield, the entrapment efficiency of batch F3 70.6±0.77. The average particle size ranges from 303±2.36 to 680±2.50 nm. By the end of 10th hour F3 formulation shown highest drug release was found to be 94.40±1.12%. The release kinetics of the optimized formulation shows zero-order drug release. The stability study indicates no significant change in the in vitro dissolution profile of optimized formulation. Conclusion: The results of various evaluation parameters, revealed that GLZ nanosponges would be possible alternative delivery systems to conventional formulation to improve its bioavailability, the emulsion solvent diffusion method is best method for preparation of nanosponges and release the drug in sustained and controlled manner.


Author(s):  
Kanchan Sonker ◽  
Randhir Gupta ◽  
Jovita Kanoujia ◽  
Viney Chawla ◽  
Manisha Pandey ◽  
...  

Microspheres of ethyl cellulose containing prednisolone sodium phosphate were prepared by double emulsion solvent diffusion method. A statistical design was used to study and optimize the variables that affect the preparation of microspheres. The experimental results showed that the drug: polymer ratio, stirring speed, concentration of surfactant, and volume of processing media played an important role in the formulation of microspheres. The prepared microspheres were characterized on the basis of particle size, scanning electron microscopy, entrapment efficiency and <italic>in vitro</italic> release. Taguchi experimental design helped to reduce the number of experiments. Optimized formulation exhibited Higuchi square root kinetics displaying diffusion from the microspheres as the main mechanism for drug release.


2021 ◽  
Vol 18 ◽  
Author(s):  
Shilpa Dawre ◽  
Padma V. Devarajan ◽  
Abdul Samad

Background: Brucellosis is a zoonotic disease and prevalent in livestock animals. The bacteria reside inside the macrophage cells of host. The WHO endorsed the combination treatment therapy for brucellosis as compared to monotherapy to avoid relapse and resistance. Therefore, we developed nanoparticles incorporating doxycycline and rifampicin in combination. Objective: The aim of the study is to develop polymeric nanoparticles incorporating doxycycline as well as rifampicin and investigate the antibacterial activity of nanoparticles in U937 human macrophage cells infected with B. abortus. Methods: Polymeric nanoparticles were developed by emulsion-solvent diffusion method and characterization was done. Results: The nanoparticles with high entrapment efficiency of both drugs were developed successfully. Scanning electron microscopy revealed spherical morphology with a size ranging ~450nm, which can be easily engulfed by macrophages. Zeta potential confirmed colloidal stability. Differential scanning calorimetry and X-ray diffraction suggested amorphization of doxycycline and rifampicin in nanoparticles. Fourier transfer infrared spectroscopy could not confirm interaction of drugs with AOT. In vitro haemolysis study confirmed safety of nanoparticles (<10%) for IV administration. Further, nanoparticles revealed the sustained release of both drugs, which followed diffusion kinetics. Nanoparticles were found stable for 6 months as per WHO guidelines. The internalization study revealed nanoparticles can be easily uptake by U-937 human macrophage cells. The efficacy study demonstrated significantly high antibacterial activity of nanoparticles as compared to free drug solution in U937 human macrophage cells infected with Brucella abortus. Conclusion: It can be concluded that developed nanoparticles entrapping doxycycline and rifampicin combination could be considered as a promising delivery system for enhancing the antibacterial activity against Brucella abortus.


Sign in / Sign up

Export Citation Format

Share Document