scholarly journals Experimental and Numerical Studies on Wave Breaking Characteristics over a Fringing Reef under Monochromatic Wave Conditions

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jong-In Lee ◽  
Sungwon Shin ◽  
Young-Taek Kim

Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r2>0.8)the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high(A0/h0<0.07in this study). However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification.

2011 ◽  
Vol 1 (32) ◽  
pp. 13 ◽  
Author(s):  
Marion Tissier ◽  
Philippe Bonneton ◽  
Fabien Marche ◽  
Florent Chazel ◽  
David Lannes

In this paper, a fully nonlinear Boussinesq model is presented and applied to the description of breaking waves and shoreline motions. It is based on Serre Green-Naghdi equations, solved using a time-splitting approach separating hyperbolic and dispersive parts of the equations. The hyperbolic part of the equations is solved using Finite-Volume schemes, whereas dispersive terms are solved using a Finite-Difference method. The idea is to switch locally in space and time to NSWE by skipping the dispersive step when the wave is ready to break, so as the energy dissipation due to wave breaking is predicted by the shock theory. This approach allows wave breaking to be handled naturally, without any ad-hoc parameterization for the energy dissipation. Extensive validations of the method are presented using laboratory data.


Author(s):  
Fuxian Gong ◽  
Manhar R. Dhanak

Abstract Direct numerical simulation (DNS), based on solution of the Navier Stokes equations, is used to study the characteristics of the transformation of monochromatic waves over a simplified fringing reef, including wave shoaling, and wave breaking that occurs under certain circumstances. The reef geometry involves a sloped plane beach extended with a simple submerged horizontal reef flat. The characteristics are studied for several case studies involving a selection of submergence depths on the reef flat and for a range of incident wave conditions, corresponding to nonbreaking, a spilling breaker and a plunging breaker, are considered. The results are compared with those of laboratory experiments (Kouvaras and Dhanak, 2018). Consistent with other studies, generation of harmonics of the fundamental wave frequency is found to accompany the wave transformation over the reef and the process of transfer of energy through wave breaking. The energy flux decreases dramatically in the onshore direction when the waves break. The more severe the wave breaking process, the greater the decrease in energy flux, particularly in the wave shoaling process. Most of the wave energy is carried by the first harmonic throughout its passage over the fringing reef. In nonbreaking waves, the energy gradually transfers from the first harmonic to the second harmonic due to bottom effects in terms of flat wave troughs and secondary waves. The further the distance away from the fore edge of the reef, the larger the percentage of the transmission, resulting in a single dominant harmonic frequency at the end of the wave surfing zone. For breaking waves, the energy carried by the first harmonic gradually decreases in the onshore direction. Energy transmission between harmonics is not as efficient as nonbreaking waves, while wave dissipation is significant in the wave breaking process.


Author(s):  
Tai-Wen Hsu ◽  
Ta-Yuan Lin ◽  
Hwung-Hweng Hwung ◽  
Yaron Toledo ◽  
Aron Roland

The combined effect of shoaling, breaking and energy dissipation on a sloping bottom was investigated. Based on the conservation principle of wave motion, a combined shoaling and bottom slope coefficient is included in the mild-slope equation (MSE) which is derived as a function of the bottom slope perturbed to the third-order. The model incorporates the nonlinear shoaling coefficient and energy dissipation factor due to wave breaking to improve the accuracy of the simulation prior to wave breaking and in the surf zone over a steep bottom. The evolution equation of the MSE is implemented in the numerical solution which provides an efficient scheme for describing wave transformation in a large coastal area. The model validity is verified by comparison to accurate numerical models, laboratory experiments and analytical solutions of waves travelling over a steep sloping beach.


2011 ◽  
Vol 1 (32) ◽  
pp. 44 ◽  
Author(s):  
Ap Van Dongeren ◽  
Andre Van der Westhuysen ◽  
Jacco Groeneweg ◽  
Gerbrant Van Vledder ◽  
Joost Lansen ◽  
...  

Over the last five years a research program has been carried out to assess the performance of the spectral wave model SWAN in the Wadden Sea so that it may be used for the transformation of offshore wave conditions to wave boundary conditions near the sea defenses (dikes and dunes). The assessment was done on the basis of extensive wave measurements conducted in Ameland inlet and the Dutch Eastern Wadden Sea, as well as relevant data from lakes and estuaries. After a first round of assessment, we found that SWAN performed reasonably well for storm conditions but three aspects required further attention. Firstly, focusing on the main channel, SWAN formulations needed to be modified in order to eliminate overprediction of the significant wave height in opposing currents. Secondly, the primary spectral peak of North Sea waves penetrating into the inlet was underpredicted. Best results were obtained when the refraction of low-frequency waves was limited and the bottom friction coefficient was set at a lower value than the current default for wind seas. Thirdly, over the tidal flats the computed ratio of integral wave height over water depth showed an apparent upper limit using the conventional Battjes and Janssen (1978) depth-limited wave breaking formulation, because the wave growth over finite depth is hampered by the present formulation of depth-induced wave breaking. The problem has been solved using a new breaker formulation. All these improvements have lead to a wave transformation model with which reliable wave conditions in the Wadden Sea and related complex areas can be determined.


2012 ◽  
Vol 1 (33) ◽  
pp. 26 ◽  
Author(s):  
Marcel Zijlema

This paper presents the application of the open source non-hydrostatic wave-flow model SWASH to wave propagation over a fringing reef, and the results are discussed and compared with observations obtained from a laboratory experiment subjected to various incident wave conditions. This study focus not only on wave breaking, bottom friction, and wave-induced setup and runup, but also on the generation and propagation of infragravity waves beyond the reef crest. Present simulations demonstrate the overall predictive capabilities of the model for a typical coral reef with steep slopes and extended reef flats.


Author(s):  
Theofanis Karambas ◽  
Christos Makris ◽  
Vasilis Baltikas

In this work, an updated version of the Karambas and Memos (2009) Boussinesq model for weakly nonlinear fully dispersive water waves, is introduced. It is implemented for wave propagation and transformation (due to shoaling, refraction, diffraction, bottom friction, wave breaking, runup, wave-structure interaction etc.) in nearshore zones and inside ports. One of the main goals is the model's thorough validation, thus it is tested against experimental data of wave transmission over and through breakwaters, uni- and multi-directional spectral wave transformation over complex bathymetries and diffraction through a breakwater gap. Case studies of model application over realistic variable bathymetries at characteristic Greek ports are also presented. Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/w8-AfAW6EYM


Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2961
Author(s):  
Moein Rezapour ◽  
Mehdi Ghassemieh ◽  
Masoud Motavalli ◽  
Moslem Shahverdi

This study presents a new way to improve masonry wall behavior. Masonry structures comprise a significant part of the world’s structures. These structures are very vulnerable to earthquakes, and their performances need to be improved. One way to enhance the performances of such types of structures is the use of post-tensioning reinforcements. In the current study, the effects of shape memory alloy as post-tensioning reinforcements on originally unreinforced masonry walls were investigated using finite element simulations in Abaqus. The developed models were validated based on experimental results in the literature. Iron-based shape memory alloy strips were installed on masonry walls by three different configurations, namely in cross or vertical forms. Seven macroscopic masonry walls were modeled in Abaqus software and were subjected to cyclic loading protocol. Parameters such as stiffness, strength, durability, and energy dissipation of these models were then compared. According to the results, the Fe-based strips increased the strength, stiffness, and energy dissipation capacity. So that in the vertical-strip walls, the stiffness increases by 98.1%, and in the cross-strip model's position, the stiffness increases by 127.9%. In the vertical-strip model, the maximum resistance is equal to 108 kN, while in the end cycle, this number is reduced by almost half and reaches 40 kN, in the cross-strip model, the maximum resistance is equal to 104 kN, and in the final cycle, this number decreases by only 13.5% and reaches 90 kN. The scattering of Fe-based strips plays an important role in energy dissipation. Based on the observed behaviors, the greater the scattering, the higher the energy dissipation. The increase was more visible in the walls with the configuration of the crossed Fe-based strips.


Author(s):  
Marion Tissier ◽  
Jochem Dekkers ◽  
Ad Reniers ◽  
Stuart Pearson ◽  
Ap Van Dongeren

Several studies have reported the development of undular bores over fringing coral reefs (e.g, Gallagher, 1976; Nwogu and Demirbilek, 2010) but the importance of this phenomenon for reef hydrodynamics has never been studied. Yet, the transformation of a long wave (e.g., swell or infragravity wave) into an undular bore leads to significant modifications of the wave field. The formation of undulations is for example associated to a significant increase of the leading bore height. Moreover, if the undulations have enough time to develop (i.e. if the reef flat is wide enough), the initial long wave will ultimately split into a series of solitons (e.g., Grue et al., 2008). All this is likely to affect wave run-up. As reeffronted coastlines are particularly vulnerable to flooding, a good understanding of long wave transformation over the reef flat, including their possible transformation into undular bores, is crucial. In this study, we investigate undular bore development over reef-type profiles based on a series of laboratory experiments. More specifically, we aim to characterize the conditions under which undular bores develop, and analyse how their development affect the hydrodynamics at the toe of the reef-lined beach and the resulting wave run-up.


Sign in / Sign up

Export Citation Format

Share Document