scholarly journals Consequences of Lethal-Whole-Body Gamma Radiation and Possible Ameliorative Role of Melatonin

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ehsan Mihandoost ◽  
Alireza Shirazi ◽  
Seied Rabie Mahdavi ◽  
Akbar Aliasgharzadeh

Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity.

2021 ◽  
Author(s):  
Nahed Abdel-Aziz ◽  
Ahmed A. Elkady ◽  
Eman M. Elgazzar

Abstract This work aims to investigate the possible effect of choline glycerophosphate alone or combined with silymarin administration in modulating whole body gamma irradiation-induced brain and intestinal injuries in rats. Rats were irradiated with 7 Gy then subjected to choline glycerophosphate and/ or silymarin for two weeks. At the end of the experiment, the animals were sacrificed and brain and intestine samples were dissected for biochemical, molecular and histopathological examinations. The results showed that choline glycerophosphate, alone or combined with silymarin, ameliorated the adverse effects of radiation as revealed by the inhibition of oxidative stress, apoptotic and inflammatory markers (MDA, Caspase 3, TNF alpha, IL-1β and NF-kB). However, TAC, anti-inflammatory marker, IL-10 and IkBa mRNA were increased. This was also accompanied by a significant increase in the Ach level, ChAT activity and α7 nAChR mRNA expression and a significant decrease in the activity of AChE as compared with the corresponding values of the irradiated group. Moreover, a reduction in the tissue lesions were observed in brain and intestinal tissues. In conclusion, choline glycerophosphate and silymarin exhibited modulating effect against detrimental effects of gamma radiation via cholinergic anti-inflammatory pathway.


1982 ◽  
Vol 38 (8) ◽  
pp. 962-963 ◽  
Author(s):  
P. K. Dev ◽  
S. M. Gupta ◽  
P. K. Goyal ◽  
G. Mehta ◽  
B. P. Pareek

2015 ◽  
Vol 35 (1) ◽  
pp. 21-28 ◽  
Author(s):  
AA Elkady ◽  
IM Ibrahim

The aim of this study was focused on investigating the possible protective effect of erdosteine against gamma radiation-induced renal lesions in male albino rats. Twenty-eight albino rats were divided into four equal groups as follows: control group, irradiated group (animals subjected to whole-body gamma irradiation at a dose of 5 Gy), treated group (each rat received 100 mg/kg body weight once daily, orally by gastric tube, erdosteine for 1 week), and treated irradiated group (each rat received 100 mg/kg body weight once daily, orally by gastric tube, erdosteine for 1 week, then exposed to whole-body gamma irradiation at a dose of 5 Gy). The results revealed that the administration of erdosteine to rats before irradiation significantly ameliorated the changes occurred in kidney function (creatinine and urea) compared with irradiated group. Also the changes in serum tumor necrosis factor α, interleukin 1β, and interleukin 6 activities were markedly improved compared with the corresponding values of irradiated group. Kidney catalase and glutathione peroxidase (GPx) activities and reduced glutathione concentration showed approximately normal level when compared with the irradiated group. The histopathological results showed distinctive pattern of renal lesions in irradiated group, while in treated irradiated group the renal tissues showed relatively well-preserved architecture. Erdosteine acts in the kidney as a potent scavenger of free radicals to prevent or ameliorate the toxic effects of gamma irradiation as shown in the biochemical and histopathological changes and might provide substantial protection against radiation-induced inflammatory damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Angela Fraga ◽  
Eva Rial-Pensado ◽  
Rubén Nogueiras ◽  
Johan Fernø ◽  
Carlos Diéguez ◽  
...  

Anorexia nervosa (AN) is an eating disorder leading to malnutrition and, ultimately, to energy wasting and cachexia. Rodents develop activity-based anorexia (ABA) when simultaneously exposed to a restricted feeding schedule and allowed free access to running wheels. These conditions lead to a life-threatening reduction in body weight, resembling AN in human patients. Here, we investigate the effect of ABA on whole body energy homeostasis at different housing temperatures. Our data show that ABA rats develop hyperactivity and hypophagia, which account for a massive body weight loss and muscle cachexia, as well as reduced uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but increased browning of white adipose tissue (WAT). Increased housing temperature reverses not only the hyperactivity and weight loss of animals exposed to the ABA model, but also hypothermia and loss of body and muscle mass. Notably, despite the major metabolic impact of ABA, none of the changes observed are associated to changes in key hypothalamic pathways modulating energy metabolism, such as AMP-activated protein kinase (AMPK) or endoplasmic reticulum (ER) stress. Overall, this evidence indicates that although temperature control may account for an improvement of AN, key hypothalamic pathways regulating thermogenesis, such as AMPK and ER stress, are unlikely involved in later stages of the pathophysiology of this devastating disease.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1965-P
Author(s):  
TEAYOUN KIM ◽  
JESSICA P. ANTIPENKO ◽  
SHELLY NASON ◽  
NATALIE PRESEDO ◽  
WILLIAM J. VAN DER POL ◽  
...  

2018 ◽  
Vol 44 (1) ◽  
Author(s):  
Ayako Ito ◽  
Aya Nozaki ◽  
Ichiro Horie ◽  
Takao Ando ◽  
Atsushi Kawakami

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2195
Author(s):  
Ester Arévalo Sureda ◽  
Xuemei Zhao ◽  
Valeria Artuso-Ponte ◽  
Sophie-Charlotte Wall ◽  
Bing Li ◽  
...  

Isoquinoline alkaloids (IQ) exert beneficial antimicrobial and anti-inflammatory effects in livestock. Therefore, we hypothesized that supplementing sows’ diets with IQ during gestation would decrease farrowing stress, affecting the piglets’ development and performance. Sows were divided into: IQ1, supplemented with IQ from gestation day 80 (G80) to weaning; IQ2, supplemented from gestation day 110 (G110) to weaning, and a non-supplemented (NC) group. Sow body weight (BW), feed intake, back-fat thickness and back-muscle thickness were monitored. Cortisol, glucose and insulin were measured in sows’ blood collected 5 d before, during, and after 7 d farrowing. Protein, fat, IgA and IgG were analyzed in the colostrum and milk. Piglets were monitored for weight and diarrhea score, and for ileum histology and gene expression 5 d post-weaning. IQ-supplemented sows lost less BW during lactation. Glucose and insulin levels were lower in the IQ groups compared to NC-sows 5 d before farrowing and had higher levels of protein and IgG in their colostrum. No other differences were observed in sows, nor in the measured parameters in piglets. In conclusion, IQ supplementation affected sows’ metabolism, reducing body weight loss during lactation. Providing IQ to sows from their entrance into the maternity barn might be sufficient to induce these effects. IQ improved colostrum quality, increasing the protein and IgG content, improving passive immunity for piglets.


Sign in / Sign up

Export Citation Format

Share Document