scholarly journals Development and Validation of a Discriminating In Vitro Dissolution Method for Oral Formulations Containing Satranidazole

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Harshal Ashok Pawar ◽  
Pooja Rasiklal Joshi

The development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to the pharmaceutical industry. Satranidazole (BCS Class II drug) is a new nitroimidazole derivative with potent antiamoebic action. There is no official dissolution medium available in the literature. In the present study, parameters such as saturation solubility in different pH medium, dissolution behavior of formulations, influence of sink conditions, stability, and discriminatory effect of dissolution testing were studied for the selection of a proper dissolution medium. Results of solubility data revealed that solubility of Satranidazole decreases with an increase in pH. Satranidazole showed better sink condition in 0.1 N HCl as compared to other media. The drug and marketed formulations were stable in the dissolution media used. An agitation speed of 75 rpm showed a more discriminating drug release profile than 50 rpm. Using optimized dissolution parameters (paddle at 75 rpm, 900 mL 0.1 N HCl) greater than 80% of the label amount is released over 60 minutes. UV-spectroscopic method used was validated for the specificity, linearity, precision, robustness, and solution stability. The method was successfully applied to granular formulations and also to marketed tablets containing 300 mg Satranidazole.

2019 ◽  
Vol 3 (2) ◽  
pp. 18-22
Author(s):  
Letícia Lenz Sfair ◽  
Caren Gobetti ◽  
Martin Steppe ◽  
Elfrides Schapoval

A dissolution test for mianserin hydrochloride in coated tablets containing 30 mg was developed and validated using a fast ultraviolet spectrophotometric method. The appropriate conditions were determinate after testing sink conditions, agitation spped and dissolution medium. The sink conditions tested showed that mianserin hydrochloride was soluble in 0.01 and 0.1 M hydrochloric acid (HCl), acetate buffer pH 4.1 and 5.0 and phosphate buffer pH 6.8. Then, dissolution tests were performed to investigate the drug release in each medium. Optimal conditions to carry out the dissolution test were 900 mL 0.1 M HCl and USP apparatus 2 (paddle) at 50 rpm stirring speed. The quantification method was also adapted and validated. The UV method showed specificity, linearity, precision and accuracy. The in vitro dissolution test can be used to evaluate the drug release profile and the data was used as an aid to establish a possible correlation with in vivo data.


2008 ◽  
Vol 59 (6) ◽  
Author(s):  
Codruta Soica ◽  
Cristina A. Dehelean ◽  
Valentin Ordodi ◽  
Diana Antal ◽  
Vicentiu Vlaia

Birch bark contains important pentacyclic triterpens that determine an anticancer, anti-inflammatory and antiviral activity. The compounds can be extracted by simple procedures with organic solvents. The major problem of this type of triterpens is their low water solubility which can be increased by physical procedures like cyclodextrin complexation. The aim of present study was to analyse the products between birch bark extract and hydroxypropyl-g -cyclodextrin. Hydroxypropyl-g -cyclodextrin (HPGCD) was used as a host to improve its solubility in water, via inclusion complex formation. In order to obtain the inclusion complexes, 1:2 molar ratio and two preparation methods (physical mixing, kneading) were used. The inclusion complexes were analyzed by in vitro dissolution tests, thermal analysis and X-ray diffraction.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 215 ◽  
Author(s):  
Marcelo Dutra Duque ◽  
Daniela Amaral Silva ◽  
Michele Georges Issa ◽  
Valentina Porta ◽  
Raimar Löbenberg ◽  
...  

A biowaiver is accepted by the Brazilian Health Surveillance Agency (ANVISA) for immediate-release solid oral products containing Biopharmaceutics Classification System (BCS) class I drugs showing rapid drug dissolution. This study aimed to simulate plasma concentrations of fluconazole capsules with different dissolution profiles and run population simulation to evaluate their bioequivalence. The dissolution profiles of two batches of the reference product Zoltec® 150 mg capsules, A1 and A2, and two batches of other products (B1 and B2; C1 and C2), as well as plasma concentration–time data of the reference product from the literature, were used for the simulations. Although products C1 and C2 had drug dissolutions < 85% in 30 min at 0.1 M HCl, simulation results demonstrated that these products would show the same in vivo performance as products A1, A2, B1, and B2. Population simulation results of the ln-transformed 90% confidence interval for the ratio of Cmax and AUC0–t values for all products were within the 80–125% interval, showing to be bioequivalent. Thus, even though the in vitro dissolution behavior of products C1 and C2 was not equivalent to a rapid dissolution profile, the computer simulations proved to be an important tool to show the possibility of bioequivalence for these products.


2018 ◽  
Vol 113 ◽  
pp. 18-28 ◽  
Author(s):  
Sitaram P. Velaga ◽  
Jelena Djuris ◽  
Sandra Cvijic ◽  
Stavroula Rozou ◽  
Paola Russo ◽  
...  

Author(s):  
Himanshu Paliwal ◽  
Ram Singh Solanki ◽  
Chetan Singh Chauhan

The purpose of conducting this study was to prepare an oral microemulsion formulation of Rosuvastatin calcium (RC) to improve its water solubility. Oil in water microemulsion was formulated using Oleic acid, Tween 80 and Polyethylene Glycol-400(PEG-400) as oil, surfactant and co-surfactant, respectively. The ideal proportion of surfactant: co-surfactant (Smix) was chosen by constructing pseudoternary diagrams. The microemulsion formulations which proved to be stable after thermodynamic stability testing were further evaluated for physical characteristics. Selected formulations were evaluated for droplet size, zeta potential, polydispersity index, viscosity and % drug content. The results were suggestive that optimized microemulsion formulation (F2) was thermodynamically stable and clear having a droplet size of 74.29 nm and zeta potential of -18.44.  In vitro dissolution study for optimized microemulsion was performed using a dialysis bag method and cumulative % drug release was determined. The result from the release study was indicative of improved solubility of Rosuvastatin calcium which may serve to boost up the oral bioavailability of drug.


Sign in / Sign up

Export Citation Format

Share Document