scholarly journals Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qingkai Han ◽  
Hao Zhang ◽  
Jinguo Liu

The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Chengjie Xu ◽  
Housheng Su ◽  
Chen Liu ◽  
Guohua Zhang

AbstractIn this paper, we investigate distributed robust adaptive synchronization for complex networked systems with bounded disturbances. We propose both average synchronization protocol and leader-following synchronization protocol based on adaptive control and variable structure control strategies. The synchronization conditions do not require any global information except a connection assumption under the adaptive control method. Furthermore, the external disturbances are attenuated effectively. Finally, we present numerical simulations to illustrate the theoretical findings.


2020 ◽  
Vol 25 (3) ◽  
pp. 55
Author(s):  
Mario Heras-Cervantes ◽  
Adriana del Carmen Téllez-Anguiano ◽  
Juan Anzurez-Marín ◽  
Elisa Espinosa-Juárez

In this paper, as an introduction, the nonlinear model of a distillation column is presented in order to understand the fundamental paper that the column heating actuator has in the distillation process dynamics as well as in the quality and safety of the process. In order to facilitate the implementation control strategies to maintain the heating power regulated in the distillation process, it is necessary to represent adequately the heating power actuator behavior; therefore, three different models (switching, nonlinear and fuzzy Takagi–Sugeno) of a DC-DC Buck-Boost power converter, selected to regulate the electric power regarding the heating power, are presented and compared. Considering that the online measurements of the two main variables of the converter, the inductor current and the capacitor voltage, are not always available, two different fuzzy observers (with and without sliding modes) are developed to allow monitoring the physical variables in the converter. The observers response is compared to determine which has a better performance. The role of the observer in estimating the state variables with the purpose of using them in the sensors fault diagnosis, using the analytical redundancy concept, likewise, from the estimation of these variables other non-measurable can be determined; for example, the caloric power. The stability analysis and observers gains are obtained by linear matrix inequalities (LMIs). The observers are validated by MATLAB® simulations to verify the observers convergence and analyze their response under system disturbances.


2021 ◽  
Vol 11 (4) ◽  
pp. 1395
Author(s):  
Abdelali El Aroudi ◽  
Natalia Cañas-Estrada ◽  
Mohamed Debbat ◽  
Mohamed Al-Numay

This paper presents a study of the nonlinear dynamic behavior a flying capacitor four-level three-cell DC-DC buck converter. Its stability analysis is performed and its stability boundaries is determined in the multi-dimensional paramertic space. First, the switched model of the converter is presented. Then, a discrete-time controller for the converter is proposed. The controller is is responsible for both balancing the flying capacitor voltages from one hand and for output current regulation. Simulation results from the switched model of the converter under the proposed controller are presented. The results show that the system may undergo bifurcation phenomena and period doubling route to chaos when some system parameters are varied. One-dimensional bifurcation diagrams are computed and used to explore the possible dynamical behavior of the system. By using Floquet theory and Filippov method to derive the monodromy matrix, the bifurcation behavior observed in the converter is accurately predicted. Based on justified and realistic approximations of the system state variables waveforms, simple and accurate expressions for these steady-state values and the monodromy matrix are derived and validated. The simple expression of the steady-state operation and the monodromy matrix allow to analytically predict the onset of instability in the system and the stability region in the parametric space is determined. Numerical simulations from the exact switched model validate the theoretical predictions.


Author(s):  
Ge Kai ◽  
Wei Zhang

In this paper, we establish a dynamic model of the hyper-chaotic finance system which is composed of four sub-blocks: production, money, stock and labor force. We use four first-order differential equations to describe the time variations of four state variables which are the interest rate, the investment demand, the price exponent and the average profit margin. The hyper-chaotic finance system has simplified the system of four dimensional autonomous differential equations. According to four dimensional differential equations, numerical simulations are carried out to find the nonlinear dynamics characteristic of the system. From numerical simulation, we obtain the three dimensional phase portraits that show the nonlinear response of the hyper-chaotic finance system. From the results of numerical simulation, it is found that there exist periodic motions and chaotic motions under specific conditions. In addition, it is observed that the parameter of the saving has significant influence on the nonlinear dynamical behavior of the four dimensional autonomous hyper-chaotic system.


2014 ◽  
Vol 631-632 ◽  
pp. 710-713 ◽  
Author(s):  
Xian Yong Wu ◽  
Hao Wu ◽  
Hao Gong

Anti-synchronization of two different chaotic systems is investigated. On the basis of Lyapunov theory, adaptive control scheme is proposed when system parameters are unknown, sufficient conditions for the stability of the error dynamics are derived, where the controllers are designed using the sum of the state variables in chaotic systems. Numerical simulations are performed for the Chen and Lu systems to demonstrate the effectiveness of the proposed control strategy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nigar Ahmed ◽  
Ajeet kumar Bhatia ◽  
Syed Awais Ali Shah

PurposeThe aim of this research is to design a robust active disturbance attenuation control (RADAC) technique combined with an extended high gain observer (EHGO) and low pass filter (LPF).Design/methodology/approachFor designing a RADAC technique, the sliding mode control (SMC) method is used. Since the standard method of SMC exhibits a chattering phenomenon in the controller, a multilayer sliding mode surface is designed for avoiding the chattering. In addition, to attenuate the unwanted uncertainties and disturbances (UUDs), the techniques of EHGO and LPF are deployed. Besides acting as a patch for disturbance attenuation, the EHGO design estimates the state variables. To investigate the stability and effectiveness of the designed control algorithm, the stability analysis followed by the simulation study is presented.FindingsThe major findings include the design of a chattering-free RADAC controller based on the multilayer sliding mode surface. Furthermore, a criterion of integrating the LPF scheme within the EHGO scheme is also developed to attenuate matched and mismatched UUDs.Practical implicationsIn practice, the quadrotor flight is opposed by different kinds of the UUDs. And, the model of the quadrotor is a highly nonlinear underactuated model. Thus, the dynamics of the quadrotor model become more complex and uncertain due to the additional UUDs. Hence, it is necessary to design a robust disturbance attenuation technique with the ability to estimate the state variables and attenuate the UUDs and also achieve the desired control objectives.Originality/valueDesigning control methods to attenuate the disturbances while assuming that the state variables are known is a common practice. However, investigating the uncertain plants with unknown states along with the disturbances is rarely taken in consideration for the control design. Hence, this paper presents a control algorithm to address the issues of the UUDs as well as investigate a criterion to reduce the chattering incurred in the controller due to the standard SMC algorithm.


2021 ◽  
pp. 55-59
Author(s):  
Yu.G. Kabaldin ◽  
D.A. Shatagin ◽  
M.S. Anosov ◽  
P.V. Kolchin ◽  
A.V. Kiselev

Diagnostics and optimization of the dynamics of an electric arc during 3D printing on a CNC machine are considered. The application of nonlinear dynamics methods in assessing the stability of the 3D printing process and the use of artificial neural networks in the classification and optimization of process parameters are shown. Keywords: 3D printing, cyber physical system, machine learning, hybrid processing, neuroform controller, diagnostics, digital twin. [email protected]


2021 ◽  
Vol 5 (4) ◽  
pp. 257
Author(s):  
Changjin Xu ◽  
Maoxin Liao ◽  
Peiluan Li ◽  
Lingyun Yao ◽  
Qiwen Qin ◽  
...  

In this study, we propose a novel fractional-order Jerk system. Experiments show that, under some suitable parameters, the fractional-order Jerk system displays a chaotic phenomenon. In order to suppress the chaotic behavior of the fractional-order Jerk system, we design two control strategies. Firstly, we design an appropriate time delay feedback controller to suppress the chaos of the fractional-order Jerk system. The delay-independent stability and bifurcation conditions are established. Secondly, we design a suitable mixed controller, which includes a time delay feedback controller and a fractional-order PDσ controller, to eliminate the chaos of the fractional-order Jerk system. The sufficient condition ensuring the stability and the creation of Hopf bifurcation for the fractional-order controlled Jerk system is derived. Finally, computer simulations are executed to verify the feasibility of the designed controllers. The derived results of this study are absolutely new and possess potential application value in controlling chaos in physics. Moreover, the research approach also enriches the chaos control theory of fractional-order dynamical system.


Sign in / Sign up

Export Citation Format

Share Document