scholarly journals Spatial-Temporal ARX Modeling and Optimization for Polymer Flooding

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yulei Ge ◽  
Shurong Li ◽  
Songlin Lu ◽  
Peng Chang ◽  
Yang Lei

A new polymer flooding model based on spatial-temporal decomposition and autoregressive model with external input (ARX) (STDARX model) is proposed. Karhunen-Loeve (K-L) decomposition is used to model the two-dimensional state parameters of reservoir (such as water saturation, pressure, and grid concentration). The polymer injection concentration and time coefficient got from the decomposition are taken as the input and output information. After being identified by least square method, the time iterative ARX models of all state variables are obtained, we build the ARX model among pressure, water saturation, grid concentration, and moisture content of production well, and identify it with recursive least-squares (RLS) method. After combining the above two models, we get the STDARX model of polymer flooding. The accuracy is proved by model with four injection wells and nine production wells through data which is obtained from mechanism model. In order to enhance the polymer flooding oil recovery when oil price is changing, iterative dynamic programming (IDP) is applied to optimize the STDARX model, to get the optimal injection of production scheme.

1982 ◽  
Vol 22 (01) ◽  
pp. 69-78
Author(s):  
H. Kazemi ◽  
D.J. MacMillan

Abstract The work presented in this paper was undertaken to study the effect of pattern configuration on oil recovery by the Maraflood oil-recovery process. The patterns studied are the five-spot and the 4 × 1 line drive. These patterns are obtained by placing infill wells in an existing 10-acre (40 469-m2) waterflooded five-spot pattern to obtain the 2.5-acre (10 117-m2) patterns. The number of infill wells is the same for both the new five-spot and new line-drive configurations and is about three times the number of existing wells. Both patterns have been used successfully in field applications by Marathon before this study. For instance, a line-drive pattern was used in Project 119-R and a five-spot pattern was used in Project 219-R. This work shows that the line drive produces more tertiary oil than the five-spot under otherwise identical reservoir conditions. Breakthrough times and oil rates for line-drive production wells are nearly the same. Meanwhile, five-spot production wells have vastly differing oil breakthrough times and oil rates. Both of the latter effects result from a nonuniform distribution of waterflood residual oil saturation in the field. Our study also shows that if producing wells in each line-drive row are connected by a perfect vertical fracture and if the same is true of the injection wells, the line-drive efficiency will improve very little. Introduction The Maraflood oil-recovery process is a viable enhanced oil-recovery technique. An appraisal of this process and other surfactant-enhanced oil-recovery schemes was reported by Gogarty. Three significant field tests of the Maraflood process were reported by Earlougher et al. In addition, a large-scale field application of this process was presented recently by Howell et al. in field applications of the Maraflood process, both line-drive and five-spot configurations have been used. In our field experience, an existing five-spot waterflood pattern is convened to another five-spot or 4 × 1 line-drive configuration by adding infill wells. The new five-spot or line-drive pattern has an area-per-well spacing of one-fourth of the original waterflood spacing. In practice, the number of infill wells required for both cases is somewhat greater than three times the number of existing wells. As the total number of wells increases, this ratio approaches the theoretical limit of three. In addition to the preceding arrangements of infill wells, many others are possible. In some arrangements, fewer infill wells are required than in our five-spot and 4 × 1 line drive. In such cases, the area per well increases, which generally causes these problems:required injectivity per injection well increases and may not be attainable because of the high viscosity of the injected fluids andthe breakthrough time is delayed. As an example, consider the case where no infill wells are drilled. In addition to the two problems just listed, the micellar/polymer flooding scheme will sweep only those regions that already have been swept well by the waterflood. The regions left unswept by the waterflood also will be left essentially unswept by the micellar/polymer flood. This means that a substantial amount of oil is left in place. Therefore, these types of undesired patterns were not considered in this study. Patterns with more infill wells than those in this study were not considered because of current economic limitations. Because of the likelihood of economic and technical merits, we also considered the placement of long vertical fractures to connect existing waterflood wells in place of infill wells. The fractures were arranged to form a more effective line drive. We emphasize that the patterns studied in this paper are those usually used in micellar/polymer flooding applications. Muskat has reported breakthrough waterflood sweep efficiencies of 72% and 88% for five-spot and 4 × 1 line drive patterns when the mobility ratio is unity. Muskat's results are for ideal plug flow displacement of red water by blue water in a perfectly homogeneous reservoir. SPEJ P. 69^


2021 ◽  
pp. 1-14
Author(s):  
Mujie Zhao ◽  
Tao Zhang ◽  
Di Wang

Aiming at the nonlinear filter problem in Ultra Wide Band (UWB) navigation and position, a high-order Unscented Kalman Filter (UKF) position method is proposed. On the one hand, the position and velocity are used as state variables to establish a nonlinear filtering model based on UWB position system. On the other hand, based on the fifth order cubature transform (CT), the analytical solution of the high-order unscented Kalman filter is obtained by introducing a free parameter δ. To verify the effectiveness of the proposed method, the Time of Arrival (TOA) location method, the least square method and fifth order CKF method are introduced as comparison methods. The simulation and experimental results show that the proposed high-order UKF method has good positioning accuracy in both static and dynamic UWB positioning methods.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2260-2278 ◽  
Author(s):  
R. S. Seright ◽  
Dongmei Wang ◽  
Nolan Lerner ◽  
Anh Nguyen ◽  
Jason Sabid ◽  
...  

Summary This paper examines oil displacement as a function of polymer-solution viscosity during laboratory studies in support of a polymer flood in Canada's Cactus Lake Reservoir. When displacing 1,610-cp crude oil from field cores (at 27°C and 1 ft/D), oil-recovery efficiency increased with polymer-solution viscosity up to 25 cp (7.3 seconds−1). No significant benefit was noted from injecting polymer solutions more viscous than 25 cp. Much of this paper explores why this result occurred. Floods in field cores examined relative permeability for different saturation histories, including native state, cleaned/water-saturated first, and cleaned/oil-saturated first. In addition to the field cores and crude oil, studies were performed using hydrophobic (oil-wet) polyethylene cores and refined oils with viscosities ranging from 2.9 to 1,000 cp. In field cores, relative permeability to water (krw) remained low, less than 0.03 for most corefloods. After extended polymer flooding to water saturations up to 0.865, krw values were less than 0.04 for six of seven corefloods. Relative permeability to oil remained reasonably high (greater than 0.05) for most of the flooding process. These observations help explain why 25-cp polymer solutions were effective in recovering 1,610-cp oil. The low relative permeability to water allowed a 25-cp polymer solution to provide a nearly favorable mobility ratio. At a given water saturation, krw values for 1,000-cp crude oil were approximately 10 times lower than for 1,000-cp refined oil. In contrast to results found for the Daqing polymer flood (Wang et al. 2000, 2011), no evidence was found in our application that high-molecular-weight (MW) hydrolyzed polyacrylamide (HPAM) solutions mobilized trapped residual oil. The results are discussed in light of ideas expressed in recent publications. The relevance of the results to field applications is also examined. Although 25-cp polymer solutions were effective in displacing oil during our corefloods, the choice of polymer viscosity for a field application must consider reservoir heterogeneity and the risk of channeling in a reservoir.


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 129-139 ◽  
Author(s):  
J. L. Juárez-Morejón ◽  
H.. Bertin ◽  
A.. Omari ◽  
G.. Hamon ◽  
C.. Cottin ◽  
...  

Summary An experimental study of polymer flooding is presented here, focusing on the influence of initial core wettability and flood maturity (volume of water injected before polymer injection) on final oil recovery. Experiments were performed using homogeneous Bentheimer Sandstone samples of similar properties. The cores were oilflooded using mineral oil for water-wet conditions and crude oil (after an aging period) for intermediate-wet conditions; the viscosity ratio between oil and polymer was kept constant in all experiments. Polymer, which is a partially hydrolyzed polyacrylamide (HPAM), was used at a concentration of 2,500 ppm in a moderate-salinity brine. The polymer solution was injected in the core at different waterflood-maturity times [breakthrough (BT) and 0, 1, 1.75, 2.5, 4, and 6.5 pore volumes (PV)]. Coreflood results show that the maturity of polymer injection plays an important role in final oil recovery, regardless of wettability. The waterflood-maturity time 0 PV (polymer injection without initial waterflooding) leads to the best sweep efficiency, whereas final oil production decreases when the polymer-flood maturity is high (late polymer injection after waterflooding). A difference of 15% in recovery is observed between early polymer flooding (0 PV) and late maturity (6.5 PV). Concerning the effect of wettability, the recovery factor obtained with water-wet cores is always lower (from 10 to 20%, depending on maturity) than the values obtained with intermediate-wet cores, raising the importance of correctly restoring core wettability to obtain representative values of polymer incremental recovery. The influence of wettability can be explained by the oil-phase distribution at the pore scale. Considering that the waterflooding period leads to different values of the oil saturation at which polymer flooding starts, we measured the core dispersivity using a tracer method at different states. The two-phase dispersivity decreases when water saturation increases, which is favorable for polymer sweep. This study shows that in addition to wettability, the maturity of polymer flooding plays a dominant role in oil-displacement efficiency. Final recovery is correlated to the dispersion value at which polymer flooding starts. The highest oil recovery is obtained when the polymer is injected early.


1981 ◽  
Vol 20 (06) ◽  
pp. 274-278
Author(s):  
J. Liniecki ◽  
J. Bialobrzeski ◽  
Ewa Mlodkowska ◽  
M. J. Surma

A concept of a kidney uptake coefficient (UC) of 131I-o-hippurate was developed by analogy from the corresponding kidney clearance of blood plasma in the early period after injection of the hippurate. The UC for each kidney was defined as the count-rate over its ROI at a time shorter than the peak in the renoscintigraphic curve divided by the integral of the count-rate curve over the "blood"-ROI. A procedure for normalization of both curves against each other was also developed. The total kidney clearance of the hippurate was determined from the function of plasma activity concentration vs. time after a single injection; the determinations were made at 5, 10, 15, 20, 30, 45, 60, 75 and 90 min after intravenous administration of 131I-o-hippurate and the best-fit curve was obtained by means of the least-square method. When the UC was related to the absolute value of the clearance a positive linear correlation was found (r = 0.922, ρ > 0.99). Using this regression equation the clearance could be estimated in reverse from the uptake coefficient calculated solely on the basis of the renoscintigraphic curves without blood sampling. The errors of the estimate are compatible with the requirement of a fast appraisal of renal function for purposes of clinical diagknosis.


Author(s):  
D.Zh. Akhmed-Zaki ◽  
T.S. Imankulov ◽  
B. Matkerim ◽  
B.S. Daribayev ◽  
K.A. Aidarov ◽  
...  

2015 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Miftahol Arifin

The purpose of this research is to analyze the influence of knowledge management on employee performance, analyze the effect of competence on employee performance, analyze the influence of motivation on employee performance). In this study, samples taken are structural employees PT.centris Kingdom Taxi Yogyakarta. The analysis tool in this study using multiple linear regression with Ordinary Least Square method (OLS). The conclusion of this study showed that the variables of knowledge management has a significant influence on employee performance, competence variables have an influence on employee performance, motivation variables have an influence on employee performance, The analysis showed that the variables of knowledge management, competence, motivation on employee performance.Keywords: knowledge management, competence, motivation, employee performance.


Sign in / Sign up

Export Citation Format

Share Document