scholarly journals Preparation and Characterization of Binary Organogels via Some Azobenzene Amino Derivatives and Different Fatty Acids: Self-Assembly and Nanostructures

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Haiying Guo ◽  
Tifeng Jiao ◽  
Xihai Shen ◽  
Qingrui Zhang ◽  
Adan Li ◽  
...  

In present work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and fatty acids with different alkyl chains in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. It showed that the length of alkyl substituent chains and azobenzene segment have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. Longer alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Morphological studies revealed that the gelator molecules self-assemble into different aggregates from lamella, wrinkle, to belt with change of solvents. Spectral studies indicated that there existed different H-bond formation and hydrophobic force, depending on different substituent chains in molecular skeletons. The present work may also give new perspectives for designing new binary organogelators and soft materials.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tifeng Jiao ◽  
Keren Ma ◽  
Xihai Shen ◽  
Qingrui Zhang ◽  
Xiujin Li ◽  
...  

The gelation behaviors of binary organogels composed of aminobenzimidazole/benzothiazole derivatives and benzoic acid with single-/multialkyl substituent chain in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. This showed that the number and length of alkyl substituent chains and benzimidazole/benzothiazole segment have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. More alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. The length of alkyl substituent chains has also played an important role in changing the gelation behaviors and assembly states. Morphological studies revealed that the gelator molecules self-assemble into different aggregates from wrinkle, lamella, belt, to fiber with change of solvents. Spectral studies indicated that there existed different H-bond formation and hydrophobic force, depending on benzimidazole/benzothiazole segment and alkyl substituent chains in molecular skeletons. The prepared nanostructured materials have wide perspectives and many potential applications in nanoscience and material fields due to their scientific values. The present work may also give new clues for designing new binary organogelators and soft materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xihai Shen ◽  
Tifeng Jiao ◽  
Qingrui Zhang ◽  
Haiying Guo ◽  
Yaopeng Lv ◽  
...  

New benzimidazole/benzothiazole imide derivatives with different alkyl substituent chains were designed and synthesized. Their gelation behaviors in 22 solvents were tested as novel low-molecular-mass organic gelators. The test showed that the alkyl substituent chains and headgroups of benzimidazole/benzothiazole residues in gelators played a crucial role in the gelation behavior of all compounds in various organic solvents. More alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. SEM and AFM observations revealed that the gelator molecules self-assemble into different aggregates from wrinkle, lamella and belt to dot with change of solvents. Spectral studies indicated that there existed different H-bond formation between imide groups and hydrophobic force of alkyl substituent chains in molecular skeletons. The present work may give some insights into design and character of new organogelators and soft materials with special molecular structures.


2013 ◽  
Vol 368-370 ◽  
pp. 752-755
Author(s):  
Ai Xin Liu

The gelation behaviors and self-assembly of organogels composed of benzimidazole/benzothiazole derivatives and benzoic acid with single/multi-alkyl substituent chain in various organic solvents were investigated. Their gelation behaviors in 20 solvents were tested as new organic gelators. It showed that the number and length of alkyl substituent chains, and benzimidazole/benzothiazole segment, have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. More alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. The length of alkyl substituent chains has also played an important role in changing the gelation behaviors and assembly states. Morphological studies revealed that the gelator molecules self-assemble into different aggregates from wrinkle, lamella, belt, to fiber with change of solvents.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Yongmei Hu ◽  
Qingshan Li ◽  
Wei Hong ◽  
Tifeng Jiao ◽  
Guangzhong Xing ◽  
...  

In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jinming Dai ◽  
Wei Hong ◽  
Youbo Di

The gelation behaviors of binary organogels composed of N-(4-aminobenzoyl)-L-glutamic acid diethyl ester with sebacic acid and citric acid in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. It showed that the molecular structures and organic solvents have played a crucial role in the gelation behavior of all gelator mixtures. More carboxyl groups in molecular skeletons in the present mixture gelators are unfavorable for the gelation of organic solvents. The mixture containing sebacic acid can form 5 kinds of organogels, while another mixture containing citric acid can only form 3 kinds of organogels in different solvents. Morphological studies revealed that the gelator molecules self-assemble into different aggregates from wrinkle and belt to fiber with change of solvents. Spectral studies indicated that there existed different H-bond formations and hydrophobic forces, depending on solvents and molecular structures. The as-prepared nanomaterials have wide perspectives in nanoscience and functional textile materials with special microstructures.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4591-4635
Author(s):  
Martin A. Hubbe ◽  
Douglas S. McLean ◽  
Karen R. Stack ◽  
Xiaomin Lu ◽  
Anders Strand ◽  
...  

This review article considers the role of fatty acids and the mutual association of their long-chain (e.g. C18) alkyl and alkenyl groups in some important aspects of papermaking. In particular, published findings suggest that interactions involving fatty acids present as condensed monolayer films can play a controlling role in pitch deposition problems. Self-association among the tails of fatty acids and their soaps also helps to explain some puzzling aspects of hydrophobic sizing of paper. When fatty acids and their soaps are present as monolayers in papermaking systems, the pH values associated with their dissociation, i.e. their pKa values, tend to be strongly shifted. Mutual association also appears to favor non-equilibrium multilayer structures that are tacky and insoluble, possibly serving as a nucleus for deposition of wood extractives, such, as resins and triglyceride fats, in pulp and paper systems.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4591-4635
Author(s):  
Martin Hubbe ◽  
Douglas McLean ◽  
Karen Stack ◽  
Xiaomin Lu ◽  
Anders Strand ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tae Hyeong Kim ◽  
Hyeji Kim ◽  
Hyo Jun Jang ◽  
Nara Lee ◽  
Kwang Hyun Nam ◽  
...  

AbstractIn the study reported herein, silver-coated copper (Ag/Cu) powder was modified with alkanethiols featuring alkyl chains of different lengths, namely butyl, octyl, and dodecyl, to improve its thermal stability. The modification of the Ag/Cu powders with adsorbed alkanethiols was confirmed by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Each powder was combined with an epoxy resin to prepare an electrically conductive film. The results confirmed that the thermal stability of the films containing alkanethiol-modified Ag/Cu powders is superior to that of the film containing untreated Ag/Cu powder. The longer the alkyl group in the alkanethiol-modified Ag/Cu powder, the higher the initial resistance of the corresponding electrically conductive film and the lower the increase in resistance induced by heat treatment.


1999 ◽  
Vol 28 (11) ◽  
pp. 1221-1222 ◽  
Author(s):  
Akio Kishida ◽  
Fusako Seto ◽  
Ken-ichiro Hiwatari ◽  
Takeshi Serizawa ◽  
Youichiro Muraoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document