scholarly journals From Single- to Multi-Objective Auto-Tuning of Programs: Advantages and Implications

2014 ◽  
Vol 22 (4) ◽  
pp. 285-297 ◽  
Author(s):  
Juan Durillo ◽  
Thomas Fahringer

Automatic tuning (auto-tuning) of software has emerged in recent years as a promising method that tries to automatically adapt the behaviour of a program to attain different performance objectives on a given computing system. This method is gaining momentum due to the increasing complexity of modern multicore-based hardware architectures. Many solutions to auto-tuning have been explored ranging from simple random search to more sophisticate methods like machine learning or evolutionary search. To this day, it is still unclear whether these approaches are general enough to encompass all the complexities of the problem (e.g. search space, parameters influencing the search space, input data sensitivity, etc.), or which approach is best suited for a given problem. Furthermore, the growing interest in auto-tuning a program for several objectives is increasing this confusion even further. The goal of this paper is to formally describe the problem addressed by auto-tuning programs and review existing solutions highlighting the advantages and drawbacks of different techniques for single-objective as well as multi-objective auto-tuning approaches.

Author(s):  
Janga Reddy Manne

Most of the engineering design problems are intrinsically complex and difficult to solve, because of diverse solution search space, complex functions, continuous and discrete nature of decision variables, multiple objectives and hard constraints. Swarm intelligence (SI) algorithms are becoming popular in dealing with these kind of complexities. The SI algorithms being population based random search techniques, use heuristics inspired from nature to enable effective exploration of optimal solutions to complex engineering problems. The SI algorithms derived based on principles of co-operative group intelligence and collective behavior of self-organized systems. This chapter presents key principles of multi-optimization, and swarm optimization for solving multi-objective engineering design problems with illustration through few examples.


2013 ◽  
Vol 479-480 ◽  
pp. 989-995
Author(s):  
Chun Liang Lu ◽  
Shih Yuan Chiu ◽  
Chih Hsu Hsu ◽  
Shi Jim Yen

In this paper, an improved hybrid Differential Evolution (DE) is proposed to enhance optimization performance by cooperating Dynamic Scaling Mutation (DSM) and Wrapper Local Search (WLS) schemes. When evolution speed is standstill, DSM can improve searching ability to achieve better balance between exploitation and exploration in the search space. Furthermore, WLS can disturb individuals to fine tune the searching range around and then properly find better solutions in the evolution progress. The effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA) that we previously published is also applied to always produce feasible candidate solutions for hybrid DE model to solve the Flexible Job-Shop Scheduling Problem (FJSP). To test the performance of the proposed hybrid method, the experiments contain five frequently used CEC 2005 numerical functions and three representative FJSP benchmarks for single-objective and multi-objective optimization verifications, respectively. Compare the proposed method with the other related published algorithms, the simulation results indicate that our proposed method exhibits better performance for solving most the test functions for single-objective problems. In addition, the wide range of Pareto-optimal solutions and the more Gantt chart diversities can be obtained for the multi-objective FJSP in practical decision-making considerations.


Author(s):  
Janga Reddy Manne

Most of the engineering design problems are intrinsically complex and difficult to solve because of diverse solution search space, complex functions, continuous and discrete nature of decision variables, multiple objectives, and hard constraints. Swarm intelligence (SI) algorithms are becoming popular in dealing with these complexities. The SI algorithms, being population-based random search techniques, use heuristics inspired from nature to enable effective exploration of optimal solutions to complex engineering problems. The SI algorithms derived from principles of cooperative group intelligence and collective behavior of self-organized systems. This chapter presents key principles of multi-optimization and swarm optimization for solving multi-objective engineering design problems with illustration through a few examples.


Author(s):  
Mengyu Wang ◽  
John Brigham

An approach is presented to incorporate a multi-objective genetic algorithm (GA) optimization strategy for the evaluation of damage within a solid continuum. Through simulated test problems based on the characterization of internal pipe surface geometry (as could potentially be affected by a damage process) from steady-state dynamic measurements of outer surface displacement, the multi-objective GA is shown to provide substantial computational improvement over single-objective strategies. Furthermore, the multi-objective approach consistently traversed the optimization search space to efficiently produce more accurate characterization results and exhibited consistently better tolerance to measurement noise in contrast to the single-objective strategies. In general, the multi-objective approach maintains a high level of diversity in the solution population during the search process, thus being potentially better equipped to avoid local minima during the search process and identify multiple solutions where they exist.


2007 ◽  
Vol 15 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Christian Igel ◽  
Nikolaus Hansen ◽  
Stefan Roth

The covariancematrix adaptation evolution strategy (CMA-ES) is one of themost powerful evolutionary algorithms for real-valued single-objective optimization. In this paper, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We first introduce a single-objective, elitist CMA-ES using plus-selection and step size control based on a success rule. This algorithm is compared to the standard CMA-ES. The elitist CMA-ES turns out to be slightly faster on unimodal functions, but is more prone to getting stuck in sub-optimal local minima. In the new multi-objective CMAES (MO-CMA-ES) a population of individuals that adapt their search strategy as in the elitist CMA-ES is maintained. These are subject to multi-objective selection. The selection is based on non-dominated sorting using either the crowding-distance or the contributing hypervolume as second sorting criterion. Both the elitist single-objective CMA-ES and the MO-CMA-ES inherit important invariance properties, in particular invariance against rotation of the search space, from the original CMA-ES. The benefits of the new MO-CMA-ES in comparison to the well-known NSGA-II and to NSDE, a multi-objective differential evolution algorithm, are experimentally shown.


2020 ◽  
Vol 39 (5) ◽  
pp. 7315-7332
Author(s):  
Lixin Wei ◽  
JinLu Zhang ◽  
Rui Fan ◽  
Xin Li ◽  
Hao Sun

In this article, an effective method, called an adaptive covariance strategy based on reference points (RPCMA-ES) is proposed for multi-objective optimization. In the proposed algorithm, search space is divided into independent sub-regions by calculating the angle between the objective vector and the reference vector. The reference vectors can be used not only to decompose the original multi-objective optimization problem into a number of single-objective subproblems, but also to elucidate user preferences to target a preferred subset of the whole Pareto front (PF). In this respect, any single objective optimizers can be easily used in this algorithm framework. Inspired by the multi-objective estimation of distribution algorithms, covariance matrix adaptation evolution strategy (CMA-ES) is involved in RPCMA-ES. A state-of-the-art optimizer for single-objective continuous functions is the CMA-ES, which has proven to be able to strike a good balance between the exploration and the exploitation of search space. Furthermore, in order to avoid falling into local optimality and make the new mean closer to the optimal solution, chaos operator is added based on CMA-ES. By comparing it with four state-of-the-art multi-objective optimization algorithms, the simulation results show that the proposed algorithm is competitive and effective in terms of convergence and distribution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hongyan Li ◽  
Xianfeng Ding ◽  
Jiang Lin ◽  
Jingyu Zhou

Abstract With the development of economy, more and more people travel by plane. Many airports have added satellite halls to relieve the pressure of insufficient boarding gates in airport terminals. However, the addition of satellite halls will have a certain impact on connecting flights of transit passengers and increase the difficulty of reasonable allocation of flight and gate in airports. Based on the requirements and data of question F of the 2018 postgraduate mathematical contest in modeling, this paper studies the flight-gate allocation of additional satellite halls at airports. Firstly, match the seven types of flights with the ten types of gates. Secondly, considering the number of gates used and the least number of flights not allocated to the gate, and adding the two factors of the overall tension of passengers and the minimum number of passengers who failed to transfer, the multi-objective 0–1 programming model was established. Determine the weight vector $w=(0.112,0.097,0.496,0.395)$ w = ( 0.112 , 0.097 , 0.496 , 0.395 ) of objective function by entropy value method based on personal preference, then the multi-objective 0–1 programming model is transformed into single-objective 0–1 programming model. Finally, a graph coloring algorithm based on parameter adjustment is used to solve the transformed model. The concept of time slice was used to determine the set of time conflicts of flight slots, and the vertex sequences were colored by applying the principle of “first come first serve”. Applying the model and algorithm proposed in this paper, it can be obtained that the average value of the overall tension degree of passengers minimized in question F is 35.179%, the number of flights successfully allocated to the gate maximized is 262, and the number of gates used is minimized to be 60. The corresponding flight-gate difficulty allocation weight is $\alpha =0.32$ α = 0.32 and $\beta =0.40$ β = 0.40 , and the proportion of flights successfully assigned to the gate is 86.469%. The number of passengers who failed to transfer was 642, with a failure rate of 23.337%.


2021 ◽  
pp. 1-18
Author(s):  
Xiang Jia ◽  
Xinfan Wang ◽  
Yuanfang Zhu ◽  
Lang Zhou ◽  
Huan Zhou

This study proposes a two-sided matching decision-making (TSMDM) approach by combining the regret theory under the intuitionistic fuzzy environment. At first, according to the Hamming distance of intuitionistic fuzzy sets and regret theory, superior and inferior flows are defined to describe the comparative preference of subjects. Hereafter, the satisfaction degrees are obtained by integrating the superior and inferior flows of the subjects. The comprehensive satisfaction degrees are calculated by aggregating the satisfaction degrees, based on which, a multi-objective TSMDM model is built. Furthermore, the multi-objective TSMDM model is converted to a single-objective model, the optimal solution of the latter is derived. Finally, an illustrative example and several analyses are provided to verify the feasibility and the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document