elite strategy
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 32)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Chengcheng Chen ◽  
Xianchang Wang ◽  
Ali Asghar Heidari ◽  
Helong Yu ◽  
Huiling Chen

Maize is a major global food crop and as one of the most productive grain crops, it can be eaten; it is also a good feed for the development of animal husbandry and essential raw material for light industry, chemical industry, medicine, and health. Diseases are the main factor limiting the high and stable yield of maize. Scientific and practical identification is a vital link to reduce the damage of diseases and accurate segmentation of disease spots is one of the fundamental techniques for disease identification. However, one single method cannot achieve a good segmentation effect to meet the diversity and complexity of disease spots. In order to solve the shortcomings of noise interference and oversegmentation in the Otsu segmentation method, a non-local mean filtered two-dimensional histogram was used to remove the noise in disease images and a new elite strategy improved comprehensive particle swarm optimization (PSO) method was used to find the optimal segmentation threshold of the objective function in this study. The experimental results of segmenting three kinds of maize foliar disease images show that the segmentation effect of this method is better than other similar algorithms and it has better convergence and stability.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongzhi Lin

Traffic accidents are frequent although various countermeasures are introduced. Traffic safety cannot be fundamentally improved if it is not considered in the transportation network design stage. Although it is well known that traffic safety is one of the most important concerns of the public, traffic safety is not adequately accommodated in transportation planning. This paper considers traffic safety as a major criterion in designing a transportation network. It is a kind of proactive measure rather than reactive measure. A bilevel programming model system is proposed where the upper level is the urban planners’ decision to minimize the estimated total number of traffic accidents, and the lower level is the travelers’ response behaviors to achieve transportation system equilibrium. A genetic algorithm (GA) with elite strategy is proposed to solve the bilevel model. The method of successive averages (MSA) is embedded for the lower level model, which is a feedback procedure between destination choice and traffic assignment. To demonstrate the effectiveness of the proposed method and algorithm, an experimental study is carried out. The results show that these methods can be a valuable tool to design a safer transportation network although efficiency, in terms of system total travel time, is slightly sacrificed.


Author(s):  
Chunliang Zhang ◽  
Can Liu

Optimal disassembly sequencing is an NP-hard problem and has always been an ambition for industry production. In the context of increasing public concerns over environmental impacts, in addition to the feasibility of a disassembly sequence, dismantling enterprises have to consider the relationship between potential profits and the impacts. Thus, an ideal disassembly sequence should weight these three factors comprehensively. Up to now, an appropriate ELV disassembly sequence still mainly relies on people’s intuitive experience and seeking an optimal disassembly sequencing method assumes enormous importance. This paper aims to address the optimal disassembly sequencing problem of ELVs by means of an improved genetic algorithm, in which a matrix coding mechanism and an elite strategy are employed. The weight of different factors can be adjusted according to the actual conditions of factories. The paper gives a case and a series of Pareto fronts are obtained. The effects of population size and maximum evolutionary time on the Pareto solutions were investigated. Ultimately, the optimal Pareto disassembly sequence corresponding to balanced profit and environmental impact is achieved, thereby providing an appropriate disassembly depth defined by the aforementioned disassembly sequence. This can contribute to timely disassembly decisions for end-of-life vehicle (ELV) dismantling enterprises, achieving a cost-effective disassembly process for survival in the context of growing environmental concerns. This paper seeks to offer a viable decision-making approach prior to real disassembly of ELVs by detailing a Pareto disassembly depth and sequence.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-33
Author(s):  
GuoChun Wang ◽  
Wenyong Gui ◽  
Guoxi Liang ◽  
Xuehua Zhao ◽  
Mingjing Wang ◽  
...  

The whale optimization algorithm (WOA) is a high-performance metaheuristic algorithm that can effectively solve many practical problems and broad application prospects. However, the original algorithm has a significant improvement in space in solving speed and precision. It is easy to fall into local optimization when facing complex or high-dimensional problems. To solve these shortcomings, an elite strategy and spiral motion from moth flame optimization are utilized to enhance the original algorithm’s efficiency, called MEWOA. Using these two methods to build a more superior population, MEWOA further balances the exploration and exploitation phases and makes it easier for the algorithm to get rid of the local optimum. To show the proposed method’s performance, MEWOA is contrasted to other superior algorithms on a series of comprehensive benchmark functions and applied to practical engineering problems. The experimental data reveal that the MEWOA is better than the contrast algorithms in convergence speed and solution quality. Hence, it can be concluded that MEWOA has great potential in global optimization.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Erbao Xu ◽  
Yan Li ◽  
Mingshun Yang ◽  
Zhenyu Wang ◽  
Yirou Liu ◽  
...  

Energy-saving production is one of the issues that must be paid attention to by today’s manufacturing enterprises. Aiming at the problem of integrated process planning and scheduling (IPPS) in the manufacturing process, considering Time-of-Use (TOU) and tiered electricity price, this paper systematically studies the energy-saving scheduling problem in order to reduce the power consumption in processing and production. To establish the multiobjective optimization mathematical model of the problem, the load balancing problem of the equipment is considered, the minimization of the power consumption and the maximum load of the equipment are taken as the optimization objectives. Then, considering the constraints of resource and multiprocess, the switching strategy of the equipment in idle time is introduced, including shutdown and restart operations. In order to solve the model easily, a multiobjective firefly algorithm (MOFA) based on five-layer coding is designed, and the elite strategy is introduced to protect the excellent firefly individuals in the iterative population. Finally, through a specific example, the Pareto solution set is obtained, which provides a reference scheme for decision-makers, and verifies the correctness of the model and the effectiveness of the algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Li Yang ◽  
Kaiyuan Yang ◽  
Danshi Sun

Given the problem that the existing method of station distributing the pseudosatellite system cannot ensure both its coverage and position in a situation of signal occlusion, it proposed a new stationary layout method with an elite strategy for a ground-based pseudosatellite positioning system based on the elite strategy of the nondominant genetic rankings (NSGA-II). The geometrical design of the pseudosatellite system is calculated by visual domain analysis and precision factors for the signal coverage age and base station. To optimize the algorithm, the NSGA-II algorithm is used. An earth pseudosatellite positioning system method of stationary distribution is obtained that simultaneously optimizes signal coverage and positioning accuracy. The algorithm is better distributed and has a certain superintendence compared with the traditional genetic algorithm.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruisheng Li

This paper establishes a mathematical model for the resource management and scheduling of the fog node cluster and establishes the optimization goals of delay, communication load, and service cost. According to the idea of genetic algorithm for single-objective optimization, this paper proposes a linear weighted genetic algorithm based on linear weighting. The optimization weight is established according to the user’s preference for the target. We normalize the optimization objective function and merge it into one target, and then we proceed with genetic manipulation to get a better solution. The experimental results show that when the user specifies the preference weight, the optimal solution can be obtained by the genetic algorithm based on linear weighting, and the algorithm execution efficiency is high. With the increase of the single-objective weight, the optimization effect of this objective is better. When the preference weight tends to be average, its overall optimization effect is not ideal. When the user does not specify the preference weight, a set of optimal solutions can be obtained through the improved nondominated sorting genetic algorithm with elite strategy. Compared with the traditional algorithm, in addition to the overall optimization effect of the target being better, the algorithm itself also has higher efficiency.


Sign in / Sign up

Export Citation Format

Share Document