scholarly journals A Novel Double-Piston Magnetorheological Damper for Space Truss Structures Vibration Suppression

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Wang ◽  
Mehdi Ahmadian ◽  
Zhaobo Chen

The design, fabrication, and testing of a new double-piston MR damper for space applications are discussed. The design concept for the damper is described in detail. The electromagnetic analysis of the design and the fabrication of the MR damper are also presented. The design analysis shows that the damper meets the weight and size requirements for being included in a space truss structure. The prototype design is tested in a damper dynamometer. The test results show that the damper can provide nearly 80 N of damping force at its maximum velocity and current. The test results also show that the seal drag could contribute significantly to the damping forces. Additionally, the test results indicate that both the work by the damper and damping force increase rapidly with increasing current at lower currents and taper off at higher currents as the damper starts to saturate. The damper force versus velocity plots show hysteresis in both pre- and postyield regions and asymmetric forces in jounce and rebound. A model is proposed for representing the force-displacement, force-velocity, and asymmetric forces observed in test results. A comparison of the modeling results and test data indicates that the model accurately represents the force characteristics of the damper.

2014 ◽  
Vol 574 ◽  
pp. 588-595
Author(s):  
Qiang Wang ◽  
Zhao Bo Chen ◽  
Mehdi Ahmadian ◽  
Wen Tao Liu

In order to develop a compact and lightweight controllable damper for space truss structures vibration suppression, a novel double-piston magnetorheological (MR) damper is proposed. Working principle of this damper has been analyzed. One prototype damper have been designed and fabricated according to the analysis results. A series of experiments have been performed to get this prototype damper's dynamical properties. Hyperbolic tangent model have been used to describe damper's nonlinear hysteresis. After model optimization using the nonlinear least squares method, the relationship between damper force and drive currents have been acquired under different excitation conditions. Comparison between the reconstructed results and testing data indicates that the optimized model shows enough accuracy to not only present the experimental data, but also forecast the hysteretic properties of this damper.


Author(s):  
Jiajia Zheng ◽  
Yancheng Li ◽  
Jiong Wang

This paper presents the design and multi-physics optimization of a novel multi-coil magnetorheological (MR) damper with a variable resistance gap (VRG-MMD). Enabling four electromagnetic coils (EMs) with individual exciting currents, a simplified magnetic equivalent circuit was presented and the magnetic flux generated by each voltage source passing through each active gap was calculated as vector operations. To design the optimal geometry of the VRG-MMD, the multi-physics optimization problem including electromagnetics and fluid dynamics has been formulated as a multi-objective function with weighting ratios among total damping force, dynamic range, and inductive time constant. Based on the selected design variables (DVs), six cases with different weighting ratios were optimized using Bound Optimization BY Quadratic Approximation (BOBYQA) technique. Finally, the vibration performance of the optimal VRG-MMD subjected to sinusoidal and triangle displacement excitations was compared to that of the typical multi-coil MR damper.


Author(s):  
Wendong Wang ◽  
Xing Ming ◽  
Yang Chu ◽  
Minghui Liu ◽  
Yikai Shi

To restrain the interference of micro-vibration caused by Control Moment Gyroscope, a new control method based on Magnetorheological damper was proposed in this paper. A mechanical model based on the structure of the presented design was built, and the semi-active control algorithm of damping force was proposed for the designed Magnetorheological damper. The magnetic flux density and other magnetic field parameters were considered and analyzed in Maxwell, and also the related hardware circuit which implements the control algorithm was prepared to test the presented design and algorithm. The results of simulation and experiments show that the presented Magnetorheological damper model and semi-active control algorithm can complete the requirements, and the vibration suppression method is efficient for Control Moment Gyroscope.


2021 ◽  
pp. 107754632110388
Author(s):  
Hongwei Lu ◽  
Zhifei Zhang ◽  
Yansong He ◽  
Zhi Li ◽  
Jujiang Xie ◽  
...  

The realization of the desired damping characteristics based on magnetorheological (MR) dampers is important for semi-active control and useful for the matching process of suspension damper. To reduce the cost of the control system and improve the output accuracy of the desired damping force, this study proposes an open-loop control method featuring an accurate inverse model of the MR damper and a tripolar current driver. The reversible sigmoid model is used to accurately and quickly calculate the desired current. Furthermore, the change characteristic of the desired current is analyzed qualitatively and quantitatively, which shows that the desired current needs to change suddenly to make the actual damping force velocity curve quickly approach the desired one. To meet the demand of the desired current, a tripolar current driver controlled by an improved PI control algorithm is proposed, which is with fast response and low noise. Finally, the bench test verifies that the control system can achieve different desired damping characteristics well, and the inherent error in this process is explained through the gap between the available damping force area and the desired damping characteristic curve and the crossover phenomenon of the dynamic characteristic curves of the MR damper.


2020 ◽  
Vol 10 (16) ◽  
pp. 5586
Author(s):  
Bo-Gyu Kim ◽  
Dal-Seong Yoon ◽  
Gi-Woo Kim ◽  
Seung-Bok Choi ◽  
Aditya Suryadi Tan ◽  
...  

In this study, a new class of magnetorheological (MR) damper, which can realize desired damping force at both low and high speeds of vehicle suspension systems, is proposed and its salient characteristics are shown through computer simulations. Unlike conventional MR dampers, the proposed MR damper has a specific pole shape function and therefore the damping coefficient is changed by varying the effective area of the main orifice. In addition, by controlling the opening or closing the bypass orifice, the drastic change of the damping coefficient is realizable. After briefly describing the operating principle, a mathematical modeling is performed considering the pole shape function which is a key feature of the proposed MR damper. Then, the field-dependent damping force and piston velocity-dependent characteristics are presented followed by an example on how to achieve desired damping force characteristics by changing the damping coefficient and slope breaking point which represents the bilinear damping property.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhizhen Dong ◽  
Zhimin Feng ◽  
Yuehua Chen ◽  
Kefan Yu ◽  
Gang Zhang

The consistency of magnetic flux density of damping gap (CMDG) represents the balancing magnetic flux density in each damping gap of magnetorheological (MR) dampers. It can make influences on the performances of MR dampers and the accuracy of relevant objective functions. In order to improve the mechanical performances of the MR damper with a two-stage coil, the function for calculating CMDG needs to be found. By establishing an equivalent magnetic circuit model of the MR damper, the CMDG function is derived. Then, the multiobjective optimization function and the working flow of optimal design are presented by combining the parallel-plate model of the MR damper with the function posed before. Taking the damping force, the dynamic range, the response time, and the CMDG as the optimization objective, and the external geometric dimensions of the SG-MRD60 damper as the bound variable, this paper optimizes the internal geometric dimensions of MR damper by using a NSGA-III algorithm on the PlatEMO platform. The results show that the obtained scheme in Pareto-optimal solutions has existed with better performance than that of SG-MRD60 scheme. According to the results of the finite element analysis, the multiobjective optimization design including the CMDG function can improve the uniformity of magnetic flux density of the MR damper in damping gap, which meets the requirements of manufacture and application.


Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


2013 ◽  
Vol 284-287 ◽  
pp. 3586-3590 ◽  
Author(s):  
Chia Pao Chang ◽  
Ying Hsiang Lin ◽  
Yu Cheng Chen

Magnetorheological fluid (MR fluid) has been widely used in the industrial fields, especially in the machinery, automobile, national defense and construction industries. Most of the researches of the Magnetorheological Damper only utilized device to examine the effects of different levels of voltage, amplitude and frequency on energy reduction. They find a combination of the number of circles of wire, damping tubes, enameled wire sleeves for liquid of MR damper controlled to increase the damping force. This study uses different ways to solve the problem. We think outside the box and apply the concepts and technology of systematic innovation method to improve the structure of the MR damper for increasing the effectiveness. This study uses the contradiction matrix, 39 engineering parameters, and 40 inventive and innovative principles to identify the areas of improvement to address the exist problems. Regarding the decrease of the magnetic field acting force due to increase of the moving distance and the effect on the magnetorheological damper efficiency. Finally, we propose an improved design of the MR Damper.


Author(s):  
Aurelio Dominguez ◽  
Ramin Sedaghati ◽  
Ion Stiharu

In this study a new nonlinear hysteresis dynamic model is employed to simulate the hysteresis behavior of a commercial MR damper. The model determines the hysteresis force considering the amplitude, frequency and current excitation as independent variables. Subsequently, based on this model, the finite element formulation of the MR damper is developed and is incorporated into the finite element formulation of the whole space truss structures with embedded MR dampers. A direct integration method with inner iterative algorithm is applied to obtain the solution of the resulting nonlinear system. The experimental study has also been conducted to validate the simulation. For the experimental set-up, a 3-Dimensional space truss structure with 4 bays in which one of the members can be replaced by MR damper has been fabricated. The experimental results have shown a good agreement with the mathematical simulation. It has been demonstrated that the vibration can be efficiently suppressed by the controllable MR dampers.


2013 ◽  
Vol 361-363 ◽  
pp. 1402-1405
Author(s):  
Zhi Hao Wang

Effective vibration control technology for stay cables is extremely critical to safe operations of cable-stayed bridges. For super-long cables, passive linear damper cannot provide sufficient damping since it can be only optimum for a given mode of cable, while a long cable may vibrate with several modes. This paper focuses on multi-mode vibration control of stay cables with passive magnetorheological (MR) dampers. Firstly, a 21.6m-long model cable was designed and established in the laboratory.Then, control performance of the cable with a passive MR damper was tested. The test results show that modal damping ratios of the cable in the first four modes can be improved significantly with the MR damper. It is further demonstrated that optimal tuned passively operated MR damper can outperform the passive viscous damper.


Sign in / Sign up

Export Citation Format

Share Document