scholarly journals Design and Multiobjective Optimization of Magnetorheological Damper considering the Consistency of Magnetic Flux Density

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhizhen Dong ◽  
Zhimin Feng ◽  
Yuehua Chen ◽  
Kefan Yu ◽  
Gang Zhang

The consistency of magnetic flux density of damping gap (CMDG) represents the balancing magnetic flux density in each damping gap of magnetorheological (MR) dampers. It can make influences on the performances of MR dampers and the accuracy of relevant objective functions. In order to improve the mechanical performances of the MR damper with a two-stage coil, the function for calculating CMDG needs to be found. By establishing an equivalent magnetic circuit model of the MR damper, the CMDG function is derived. Then, the multiobjective optimization function and the working flow of optimal design are presented by combining the parallel-plate model of the MR damper with the function posed before. Taking the damping force, the dynamic range, the response time, and the CMDG as the optimization objective, and the external geometric dimensions of the SG-MRD60 damper as the bound variable, this paper optimizes the internal geometric dimensions of MR damper by using a NSGA-III algorithm on the PlatEMO platform. The results show that the obtained scheme in Pareto-optimal solutions has existed with better performance than that of SG-MRD60 scheme. According to the results of the finite element analysis, the multiobjective optimization design including the CMDG function can improve the uniformity of magnetic flux density of the MR damper in damping gap, which meets the requirements of manufacture and application.

2018 ◽  
Vol 144 ◽  
pp. 02004
Author(s):  
T. M. Gurubasavaraju ◽  
Kumar Hemantha ◽  
Mahalingam Arun

Magnetorheological fluids are smart materials, which are responsive to the external stimulus and changes their rheological properties. The damper performance (damping force) is dependent on the magnetic flux density induced at the annular gap. Magnetic flux density developed at fluid flow gap of MR damper due to external applied current is also dependent on materials properties of components of MR damper (such as piston head, outer cylinder and piston rod). The present paper discus about the influence of different materials selected for components of the MR damper on magnetic effect using magnetostatic analysis. Different materials such as magnetic and low carbon steels are considered for piston head of the MR damper and magnetic flux density induced at fluid flow gap (filled with MR fluid) is computed for different DC current applied to the electromagnetic coil. Developed magnetic flux is used for calculating the damper force using analytical method for each case. The low carbon steel has higher magnetic permeability hence maximum magnetic flux could pass through the piston head, which leads to higher value of magnetic effect induction at the annular gap. From the analysis results it is observed that the magnetic steel and low carbon steel piston head provided maximum magnetic flux density. Eventually the higher damping force can be observed for same case.


2018 ◽  
Vol 21 (1) ◽  
pp. 02-14 ◽  
Author(s):  
Phu Xuan Do ◽  
Long Bui Quoc Mai ◽  
Chi Van Le ◽  
Thang Le Huy Tran

In this study, a new development of knee exoskeleton is presented. Kinematic parameters of the proposed exoskeleton are analysed to find relations among forces and torques. After analysing, the damping force of magneto-rheological (MR in short) damper is carried out. The magnetic flux density and the yield stress functions are found, and these functions are bases for derivation of damping force formulation. The forces from the exoskeleton are directly related to the damping force. Hence these values are used as an objective to find the optimized geometry of the damper. The optimization process is done by using ANSYS ADPL. It is shown that the requirement of design is obtained.


Author(s):  
Jiajia Zheng ◽  
Yancheng Li ◽  
Jiong Wang

This paper presents the design and multi-physics optimization of a novel multi-coil magnetorheological (MR) damper with a variable resistance gap (VRG-MMD). Enabling four electromagnetic coils (EMs) with individual exciting currents, a simplified magnetic equivalent circuit was presented and the magnetic flux generated by each voltage source passing through each active gap was calculated as vector operations. To design the optimal geometry of the VRG-MMD, the multi-physics optimization problem including electromagnetics and fluid dynamics has been formulated as a multi-objective function with weighting ratios among total damping force, dynamic range, and inductive time constant. Based on the selected design variables (DVs), six cases with different weighting ratios were optimized using Bound Optimization BY Quadratic Approximation (BOBYQA) technique. Finally, the vibration performance of the optimal VRG-MMD subjected to sinusoidal and triangle displacement excitations was compared to that of the typical multi-coil MR damper.


Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Zekeriya Parlak ◽  
Tahsin Engin ◽  
İsmail Şahin

Magnetorheological (MR) dampers have attracted the interest of suspension designers and researchers because of their variable damping feature, mechanical simplicity, robustness, low power consumption and fast response. This study deals with the optimal configuration of an MR damper using the Taguchi experimental design approach. The optimal solutions of the MR damper are evaluated for the maximum dynamic range and the maximum damper force separately. The MR dampers are constrained in a cylindrical container defined by radius and height. The optimal damper configurations obtained from this study are fabricated and tested for verification. The verification tests show that the dampers provide the specified damper force and dynamic range.


Author(s):  
Toshihiko Shiraishi ◽  
Tomoya Sakuma ◽  
Shin Morishita

Two typical types of MR damper were proposed, where the orifice for MR fluid was designed to place between the piston and the cylinder in one type, and to place on the piston in the other type. In the former design, MR fluid was expected to be subjected to shear flow in the orifice, and subjected to Poiseuille flow in the latter design. The damping force of MR dampers was experimentally measured under various conditions of piston speed, piston amplitude and applied electric current to the magnetic coil. The experimental results showed that the maximum damping force were almost the same in both types of damper under the same conditions, except for case under very little amplitude. It was also shown that typical characteristics of MR damper depended on the clearance of orifice and air volume in MR dampers, and the optimal design for the dynamic range of damping force existed in relation to the clearance of orifice. The experimental result of the damping force of these dampers showed good agreement with the analytical result.


Author(s):  
Fanghui Xu ◽  
Dawei Dong ◽  
Yan Huang ◽  
Rui Zhang ◽  
Shizhe Song ◽  
...  

The diesel multiple unit (DMU) has been widely used in high-speed railway service due to its flexibility and economy. Considering the broadband and complex vibration generated by DMU power package, the advanced semi-active suspension with magnetorheological (MR) dampers is introduced to promote anti-vibration performance. In this work, a comprehensive optimal design approach for MR damper used in DMU power package is proposed. Quasi-static modeling process is conducted to obtain MR damper's low-frequency outputs, while its high-frequency damping forces are calculated by physical modeling considering the fluid compressibility and piston assembly inertia. Then the objective functions and optimization variables are determined. Based on response surface and linear correlation analysis, the influence of the optimal variables on the objective functions is discussed. Using reference-point based nondominated sorting approach (NSGA-III), the evolutionary many-objective optimization is conducted. In addition, magnetic design is incorporated into the optimal process to ensure the magnetic flux density in the effective working area. Finally, an optimized MR damper prototype is manufactured and tested. By comparing the experimental damping force with calculated results in both low-frequency and high-frequency ranges, the effectiveness of the presented optimal method for MR dampers is validated.


Author(s):  
Gaoyu Liu ◽  
Fei Gao ◽  
Wei-Hsin Liao

Abstract Due to low power consumption and fast response, magnetorheological (MR) dampers are widely used in various engineering applications. To enhance the performances, efforts have been made to increase the field dependent force with the same power consumption. However, the fluid viscous force is also increased significantly, which is undesirable in practical use. To tackle this problem, the focus of this paper is to design and test a new MR damper with micro-grooves for performance enhancement. First, the detailed design of the proposed MR damper is provided. A prototype of the new MR damper is fabricated. Silicon steel circular rings with thickness of 0.25 mm are installed around the damper piston to form two-layer micro-grooves. Experimental results of the two MR dampers without and with micro-grooves are then compared. The advantages of MR damper with micro-grooves over the one without micro-grooves are validated. The damping force and controllable force range of MR damper with micro-grooves are larger than the one without micro-grooves. When designing MR damper, making micro-grooves can also decrease the increment of fluid viscous force while keeping the same increase of field dependent force. With micro-grooves, the field dependent force is increased by 92.7% with the same power consumption, while the fluid viscous force is increased by 43%.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Guoliang Hu ◽  
Fengshuo Liu ◽  
Zheng Xie ◽  
Ming Xu

A magnetorheological (MR) damper is one of the most advanced devices used in a semiactive control system to mitigate unwanted vibration because the damping force can be controlled by changing the viscosity of the internal magnetorheological (MR) fluids. This study proposes a typical double coil MR damper where the damping force and dynamic range were derived from a quasistatic model based on the Bingham model of MR fluid. A finite element model was built to study the performance of this double coil MR damper by investigating seven different piston configurations, including the numbers and shapes of their chamfered ends. The objective function of an optimization problem was proposed and then an optimization procedure was constructed using the ANSYS parametric design language (APDL) to obtain the optimal damping performance of a double coil MR damper. Furthermore, experimental tests were also carried out, and the effects of the same direction and reverse direction of the currents on the damping forces were also analyzed. The relevant results of this analysis can easily be extended to the design of other types of MR dampers.


Sign in / Sign up

Export Citation Format

Share Document