scholarly journals Potential Smoothened Inhibitor from Traditional Chinese Medicine against the Disease of Diabetes, Obesity, and Cancer

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Kuan-Chung Chen ◽  
Mao-Feng Sun ◽  
Hsin-Yi Chen ◽  
Cheng-Chun Lee ◽  
Calvin Yu-Chian Chen

Nowadays, obesity becomes a serious global problem, which can induce a series of diseases such as type 2 diabetes mellitus, cancer, cardiovascular disease, metabolic syndrome, and stoke. For the mechanisms of diseases, the hedgehog signaling pathway plays an important role in body patterning during embryogenesis. For this reason, smoothened homologue (Smo) protein had been indicated as the drug target. In addition, the small-molecule Smo inhibitor had also been used in oncology clinical trials. To improve drug development of TCM compounds, we aim to investigate the potent lead compounds as Smo inhibitor from the TCM compounds in TCM Database@Taiwan. The top three TCM compounds, precatorine, labiatic acid, and 2,2′-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid), have displayed higher potent binding affinities than the positive control, LY2940680, in the docking simulation. After MD simulations, which can optimize the result of docking simulation and validate the stability of H-bonds between each ligand and Smo protein under dynamic conditions, top three TCM compounds maintain most of interactions with Smo protein, which keep the ligand binding stable in the binding domain. Hence, we propose precatorine, labiatic acid, and 2,2′-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid) as potential lead compounds for further study in drug development process with the Smo protein.

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Kuen-Bao Chen ◽  
Hsin-Yi Chen ◽  
Kuan-Chung Chen ◽  
Calvin Yu-Chian Chen

Recently, cardiovascular disease, also known as loop circulatory system diseases or disorders, is one of the serious diseases including heart disease, stroke, atherosclerosis, myocardial infarction, hypertension, hypotension, and thrombosis. Human pregnane X receptor, PXR, plays a crucial role in exogenous and endobiotic metabolism for rabbit, rat, mouse, and human. The PXR activation can protect the blood vessels from damage of hazardous substances. In this study we aim to investigate the potent lead compounds as PXR receptor agonist against cardiovascular disease. To improve drug development of TCM compounds, we aim to investigate the potent lead compounds as PXR agonists from the TCM compounds in TCM Database@Taiwan. The top three TCM compounds, bis(4-hydroxybenzyl) ether mono-β-D-glucopyranoside (BEMG), ixerisoside, and tangshenoside II, have displayed higher potent binding affinities than the positive control, PNU-142721, in the docking simulation. After MD simulations, which can optimize the result of docking simulation and validate the stability of H-bonds between each ligand and PXR protein under dynamic conditions, top TCM compounds, BEMG and tangshenoside II, maintain most of interactions with PXR protein, which keep the ligand binding stable in the binding domain. Hence, we propose BEMG and tangshenoside II as potential lead compounds for further study in drug development process with the PXR protein.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kuan-Chung Chen ◽  
Kuen-Bao Chen ◽  
Hsin-Yi Chen ◽  
Calvin Yu-Chian Chen

A recent research in cancer research demonstrates that tumor-specific pyruvate kinase M2 (PKM2) plays an important role in chromosome segregation and mitosis progression of tumor cells. To improve the drug development of TCM compounds, we aim to identify potent TCM compounds as lead compounds of PKM2 regulators. PONDR-Fit protocol was utilized to predict the disordered disposition in the binding domain of PKM2 protein before virtual screening as the disordered structure in the protein may cause the side effect and downregulation of the possibility of ligand to bind with target protein. MD simulation was performed to validate the stability of interactions between PKM2 proteins and each ligand after virtual screening. The top TCM compounds, saussureamine C and precatorine, extracted fromLycium chinenseMill. andAbrus precatoriusL., respectively, have higher binding affinities with target protein in docking simulation than control. They have stable H-bonds with residues A:Lys311 and some other residues in both chains of PKM2 protein. Hence, we propose the TCM compounds, saussureamine C and precatorine, as potential candidates as lead compounds for further study in drug development process with the PKM2 protein against cancer.


Author(s):  
MUHAMMAD FAUZI ◽  
ARIS FADILLAH ◽  
FAUZI RAHMAN ◽  
JUWITA RAMADHANI ◽  
KARINA ERLIANTI ◽  
...  

Objective: SARS-CoV-2 is a type of coronavirus that causes COVID-19 disease. Currently, the right and effective drug for the treatment of COVID-19 has not been found. Artocarpin in the breadfruit plant (Artocarpus altilis), which was tested, has been shown to have antiviral activity. However, artocarpin has a hydroxyl group that can undergo oxidation within a certain time, thereby reducing the stability of the compound and non-specific antiviral activity. Methods: In this study, the structural modification of artocarpin was carried out to obtain compounds with anticoronavirus activity with good physicochemical properties. This research was conducted in silico, including molecular docking simulation, bioavailability prediction, and preADMET. Results: The top 20 modified compounds were selected from each target's top 3 compounds, which had better bond energies compared to the positive control. These 3 compounds have the potential to inhibit ACE2 and Mpro receptors and 1 compound are better at inhibiting both. Conclusion: From the results of the research conducted, we conclude that the 3 best compounds can be potential candidates that can be developed as COVID-19 therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kuan-Chung Chen ◽  
Wen-Yuan Lee ◽  
Hsin-Yi Chen ◽  
Calvin Yu-Chian Chen

A recent research demonstrates that the inhibition of mammalian target of rapamycin (mTOR) improves survival and health for patients with Leigh syndrome. mTOR proteins can be treated as drug target proteins against Leigh syndrome and other mitochondrial disorders. In this study, we aim to identify potent TCM compounds from the TCM Database@Taiwan as lead compounds of mTOR inhibitors. PONDR-Fit protocol was employed to predict the disordered disposition in mTOR protein before virtual screening. After virtual screening, the MD simulation was employed to validate the stability of interactions between each ligand and mTOR protein in the docking poses from docking simulation. The top TCM compounds, picrasidine M and acerosin, have higher binding affinities with target protein in docking simulation than control. There have H-bonds with residues Val2240 andπinteractions with common residue Trp2239. After MD simulation, the top TCM compounds maintain similar docking poses under dynamic conditions. The top two TCM compounds, picrasidine M and acerosin, were extracted fromPicrasma quassioides(D. Don) Benn. andVitex negundoL. Hence, we propose the TCM compounds, picrasidine M and acerosin, as potential candidates as lead compounds for further study in drug development process with the mTOR protein against Leigh syndrome and other mitochondrial disorders.


2021 ◽  
Author(s):  
Elyas Mohammadi ◽  
Zana Pirkhezrian ◽  
Samira Dashti ◽  
Naghmeh Saedi ◽  
Mohammad Hadi Sekhavati

Background: A cross-protective avian influenza vaccine candidate can be designed by using a preserved antigen against mutation in various subtypes of influenza. M2e peptide sequence has remained remarkably unchanged in influenza type A isolated since 1918. Methods: A consensus sequence of M2e peptide was obtained from 31 sequences of H5N8, H5N1, H9N2 and H7N9 subtypes of avian influenza virus isolated from 7 avian species in 5 Asian countries. A partial sequence of flagellin was considered as an adjuvant. Subsequently, two chimeric antigens were designed to be virtually cloned and expressed using PYD1 vector and EBY100 yeast strain. The stability and conformational features of these two antigens were assessed through molecular dynamic (MD) simulations. The detectability of vaccine candidates by a specific monoclonal antibody (MAb148) were estimated through docking studies. Results: In spite of significant compactness and stability of the first candidate in comparison with the second design, it was less detectable by MAb148. Contrary to the first chimeric antigen, Van der Waals, electrostatic and binding energies of the interaction of the second antigen with MAb148 were significantly closer to the positive control. It is shown that epitopes of the second chimeric antigen could be correctly located in the specific pocket of CDR region of MAb148. Conclusion: The second chimeric antigen could be considered as a yeast-displayed avian influenza vaccine candidate due to the capability of provoking humoral immunity and innate immune system by M2e and flagellin respectively.


2021 ◽  
Vol 68 (3) ◽  
pp. 667-682
Author(s):  
Tahira Naqvi ◽  
Asif Amin ◽  
Shujat Ali ◽  
Mohsin Y. Lone ◽  
Nadeem Bashir ◽  
...  

The activation of caspases is central to apoptotic process in living systems. Defects in apoptosis have been implicated with carcinogenesis. Need to develop smart agents capable of inducing apoptosis in tumor cells is obvious. With this motive, diversity oriented synthesis of 1-benzylpyrrolidin-3-ol analogues was envisaged. The multi component Ugi reaction synthesized library of electronically diverse analogues was explored for cytotoxic propensity towards a panel of human cancer cell lines at 10 μM. The lead compounds exhibit a selective cytotoxicity towards HL-60 cells as compared to cell lines derived from solid tumors. Besides, their milder cytotoxic effect on non-cancerous cell lines reaffirm their selective action towards cancer cells only.The lead molecules were tested for their ability to target caspase-3, as a vital protease triggering apoptosis. The lead compounds were observed to induce apoptosis in HL-60 cells around 10 μM concentration. The lead compounds exhibited various non-covalent supra type interactions with caspase-3 key residues around the active site. The binding ability of lead compounds with caspase-3 was studied via molecular docking and molecular dynamic (MD) simulations. MD simulations indicated the stability of compound-caspase-3 complex throughout the 50 ns simulation run. The stability and bio-availability of the lead compounds under physiological conditions was assessed by their interaction with Bovine Serum Albumin (BSA) as model protein. BSA interactions of lead compounds were studied by various bio-physical methods and further substantiated with in silico MD simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kuan-Chung Chen ◽  
Wen-Yuan Lee ◽  
Hsin-Yi Chen ◽  
Calvin Yu-Chian Chen

It has been indicated that tumor necrosis factor receptor-associated factor-6 (TRAF6) will upregulate the expression of hypoxia-inducible factor-1α(HIF-1α) and promote tumor angiogenesis. TRAF6 proteins can be treated as drug target proteins for a differentiation therapy against cancers. As structural disordered disposition in the protein may induce the side-effect and reduce the occupancy for ligand to bind with target protein, PONDR-Fit protocol was performed to predict the disordered disposition in TRAF6 protein before virtual screening. TCM compounds from the TCM Database@Taiwan were employed for virtual screening to identify potent compounds as lead compounds of TRAF6 inhibitor. After virtual screening, the MD simulation was performed to validate the stability of interactions between TRAF6 proteins and each ligand. The top TCM compounds, tryptophan, diiodotyrosine, and saussureamine C, extracted fromSaussurea lappaClarke,Bos taurus domesticusGmelin, andLycium chinenseMill., have higher binding affinities with target protein in docking simulation. However, the docking pose of TRAF6 protein with tryptophan is not stable under dynamic condition. For the other two TCM candidates, diiodotyrosine and saussureamine C maintain the similar docking poses under dynamic conditions. Hence, we propose the TCM compounds, diiodotyrosine and saussureamine C, as potential candidates as lead compounds for further study in drug development process with the TRAF6 protein against cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kuan-Chung Chen ◽  
Hsin-Yi Chen ◽  
Calvin Yu-Chian Chen

Protein phosphatase 2A (PP2A) is an important phosphatase which regulates various cellular processes, such as protein synthesis, cell growth, cellular signaling, apoptosis, metabolism, and stress responses. It is a holoenzyme composed of the structural A and catalytic C subunits and a regulatory B subunit. As an environmental toxin, okadaic acid, is a tumor promoter and binds to PP2A catalytic C subunit and the cancer-associated mutations in PP2A structural A subunit in human tumor tissue; PP2A may have tumor-suppressing function. It is a potential drug target in the treatment of cancer. In this study, we screen the TCM compounds in TCM Database@Taiwan to investigate the potent lead compounds as PP2A agent. The results of docking simulation are optimized under dynamic conditions by MD simulations after virtual screening to validate the stability of H-bonds between PP2A-αprotein and each ligand. The top TCM candidates, trichosanatine and squamosamide, have potential binding affinities and interactions with key residues Arg89 and Arg214 in the docking simulation. In addition, these interactions were stable under dynamic conditions. Hence, we propose the TCM compounds, trichosanatine and squamosamide, as potential candidates as lead compounds for further study in drug development process with the PP2A-αprotein.


2020 ◽  
Author(s):  
MAK Williams ◽  
V Cornuault ◽  
AH Irani ◽  
VV Symonds ◽  
J Malmström ◽  
...  

© 2020 American Chemical Society. Evidence is presented that the polysaccharide rhamnogalacturonan I (RGI) can be biosynthesized in remarkably organized branched configurations and surprisingly long versions and can self-assemble into a plethora of structures. AFM imaging has been applied to study the outer mucilage obtained from wild-type (WT) and mutant (bxl1-3 and cesa5-1) Arabidopsis thaliana seeds. For WT mucilage, ordered, multichain structures of the polysaccharide RGI were observed, with a helical twist visible in favorable circumstances. Molecular dynamics (MD) simulations demonstrated the stability of several possible multichain complexes and the possibility of twisted fibril formation. For bxl1-3 seeds, the imaged polymers clearly showed the presence of side chains. These were surprisingly regular and well organized with an average length of ∼100 nm and a spacing of ∼50 nm. The heights of the side chains imaged were suggestive of single polysaccharide chains, while the backbone was on average 4 times this height and showed regular height variations along its length consistent with models of multichain fibrils examined in MD. Finally, in mucilage extracts from cesa5-1 seeds, a minor population of chains in excess of 30 μm long was observed.


2019 ◽  
Vol 16 (4) ◽  
pp. 307-313 ◽  
Author(s):  
Nasrin Zarkar ◽  
Mohammad Ali Nasiri Khalili ◽  
Fathollah Ahmadpour ◽  
Sirus Khodadadi ◽  
Mehdi Zeinoddini

Background: DAB389IL-2 (Denileukin diftitox) as an immunotoxin is a targeted pharmaceutical protein and is the first immunotoxin approved by FDA. It is used for the treatment of various kinds of cancer such as CTCL lymphoma, melanoma, and Leukemia but among all of these, treatment of CTCL has special importance. DAB389IL-2 consists of two distinct parts; the catalytic domain of Diphtheria Toxin (DT) that genetically fused to the whole IL-2. Deamidation is the most important reaction for chemical instability of proteins occurs during manufacture and storage. Deamidation of asparagine residues occurs at a higher rate than glutamine residues. The structure of proteins, temperature and pH are the most important factors that influence the rate of deamidation. Methods: Since there is not any information about deamidation of DAB389IL-2, we studied in silico deamidation by Molecular Dynamic (MD) simulations using GROMACS software. The 3D model of fusion protein DAB389IL-2 was used as a template for deamidation. Then, the stability of deamidated and native form of the drug was calculated. Results: The results of MD simulations were showed that the deamidated form of DAB389IL-2 is more unstable than the normal form. Also, deamidation was carried by incubating DAB389IL-2, 0.3 mg/ml in ammonium hydrogen carbonate for 24 h at 37o C in order to in vitro experiment. Conclusion: The results of in vitro experiment were confirmed outcomes of in silico study. In silico and in vitro experiments were demonstrated that DAB389IL-2 is unstable in deamidated form.


Sign in / Sign up

Export Citation Format

Share Document