scholarly journals Numerical Analysis of Nanofluids in Differentially Heated Enclosure Undergoing Orthogonal Rotation

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
H. Saleh ◽  
I. Hashim

Natural convection heat transfer in a rotating, differentially heated enclosure is studied numerically in this paper. The rotating enclosure is filled with water-Ag, water-Cu, water-Al2O3, or water-TiO2nanofluids. The governing equations are in velocity, pressure, and temperature formulation and solved using the staggered grid arrangement together with MAC method. The governing parameters considered are the solid volume fraction,0.0 ≤ ϕ ≤ 0.05, and the rotational speeds,3.5≤ Ω ≤ 17.5 rpm, and the centrifugal force is smaller than the Coriolis force and both forces were kept below the buoyancy force. It is found that the angular locations of the local maximums heat transfer were sensitive to rotational speeds and nanoparticles concentration. The global quantity of heat transfer rate increases about 1.5%, 1.1%, 0.8%, and 0.6% by increasing 1%ϕof the nanoparticles Ag, Cu, Al2O3, and TiO2, respectively, for the considered rotational speeds.

2018 ◽  
Vol 48 (2) ◽  
pp. 50-71
Author(s):  
M. Muthtamilselvan ◽  
S. Sureshkumar

Abstract This paper is intended to investigate the effects of an inclined magnetic field on the mixed convection flow in a lid-driven porous enclosure filled with nanofluid. Both the left and right vertical walls of the cavity are thermally insulated while the bottom and top horizontal walls are maintained at constant but different temperatures. The governing equations are solved numerically by using finite volume method on a uniformly staggered grid system. The computational results are obtained for various combinations of Richardson number, Darcy number, Hartmann number, inclination angle of magnetic field, and solid volume fraction. It is found that the presence of magnetic field deteriorates the fluid flow, which leads to a significant reduction in the overall heat transfer rate. The inclination angle of magnetic field plays a major role in controlling the magnetic field strength and the overall heat transfer rate is enhanced with the increase of inclination angle of magnetic field. Adding the nanoparticles in the base fluid significantly increases the overall heat transfer rate in the porous medium whether the magnetic field is considered or not.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Raisi ◽  
S. M. Aminossadati ◽  
B. Ghasemi

This technical brief numerically examines the mixed convection heat transfer of a Cu-water nanofluid in a parallel-plate vertical channel that is influenced by a magnetic field. An upward flow of Cu-water nanofluid enters the channel at a relatively low temperature and a uniform velocity. It is found that the magnetic field has dissimilar effects on the heat transfer rate at different Richardson numbers. The increase of solid volume fraction results in an increase of the heat transfer rate especially at low Richardson numbers.


2016 ◽  
Vol 8 (2) ◽  
pp. 279-292
Author(s):  
H. Saleh ◽  
I. Hashim

AbstractMagnetohydrodynamic natural convection heat transfer in a rotating, differentially heated enclosure is studied numerically in this article. The governing equations are in velocity, pressure and temperature formulation and solved using the staggered grid arrangement together with MAC method. The governing parameters considered are the Hartmann number, 0≤Ha≤70, the inclination angle of the magnetic field, 0°≤θ 90°, the Taylor number, 8.9 x 104≤Ta≤1.1 x 106 and the centrifugal force is smaller than the Coriolis force and the both forces were kept below the buoyancy force. It is found that a sufficiently large Lorentz force neutralizes the effect of buoyancy, inertial and Coriolis forces. Horizontal or vertical direction of the magnetic field was most effective in reducing the global heat transfer.


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


2019 ◽  
Vol 29 (10) ◽  
pp. 3685-3706
Author(s):  
Zafar Namazian ◽  
S.A.M. Mehryan

Purpose The purpose of this study is to numerically study the heat transfer of free convection of a magnetizable micropolar nanofluid inside a semicircular enclosure. Design/methodology/approach The flow domain is under simultaneous influences of two non-uniform magnetic fields generated by current carrying wires. The directions of the currents are the same. Although the geometry is symmetric, it is physically asymmetric. The impacts of key parameters, including Rayleigh number Ra = 103-106, Hartman number Ha = 0-50, vortex viscosity parameter Δ = 0-4, nanoparticles volume fraction φ = 0-0.04 and magnetic number Mnf = 0-1000, on the macro- and micro-scales flows, temperature and heat transfer rate are studied. Finding The outcomes show that dispersing of the nanoparticles in the host fluid increases the strength of macro- and micro-scale flows. When Mnf = 0, the increment of the vortex viscosity parameter increases the strength of the particles micro-rotations, while this characteristic is decreased by growing Δ for Mnf ≠ 0. The increment of Δ and Ha decreases the rate of heat transfer. The increment of Ha decreases the enhancement percentage of heat transfer rate because of dispersing nanoparticles, known as En parameter. In addition, the value of Δ has no effect on En. Moreover, the average Nusselt number Nuavg and En remain constant by increasing the magnetic number Mnf for different volume fraction values. Originality/value The authors believe that all of the results, both numerical and asymptotic, are original and have not been published elsewhere yet.


2019 ◽  
Vol 16 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Ishrat Zahan ◽  
R Nasrin ◽  
M A Alim

A numerical analysis has been conducted to show the effects of magnetohydrodynamic (MHD) and Joule heating on heat transfer phenomenon in a lid driven triangular cavity. The heat transfer fluid (HTF) has been considered as water based hybrid nanofluid composed of equal quantities of Cu and TiO2 nanoparticles. The bottom wall of the cavity is undulated in sinusoidal pattern and cooled isothermally. The left vertical wall of the cavity is heated while the inclined side is insulated. The two dimensional governing partial differential equations of heat transfer and fluid flow with appropriate boundary conditions have been solved by using Galerkin's finite element method built in COMSOL Multyphysics. The effects of Hartmann number, Joule heating, number of undulation and Richardson number on the flow structure and heat transfer characteristics have been studied in details. The values of Prandtl number and solid volume fraction of hybrid nanoparticles have been considered as fixed. Also, the code validation has been shown. The numerical results have been presented in terms of streamlines, isotherms and average Nusselt number of the hybrid nanofluid for different values of governing parameters. The comparison of heat transfer rate by using hybrid nanofluid, Cu-water nanofluid,  TiO2 -water nanofluid and clear water has been also shown. Increasing wave number from 0 to 3 enhances the heat transfer rate by 16.89%. The enhanced rate of mean Nusselt number for hybrid nanofluid is found as 4.11% compared to base fluid.


Author(s):  
Manab Kumar Das ◽  
Pravin Shridhar Ohal

PurposeThe purpose of this paper is to investigate the behaviour of nanofluids numerically inside a partially heated and partially cooled square cavity to gain insight into heat transfer and flow processes induced by a nanofluid.Design/methodology/approachA model is developed to analyze the behaviour of nanofluids taking into account the solid volume fraction χ. The transport equations are solved numerically with finite volume approach using SIMPLEC algorithm.FindingsComparisons with previously published work on the basis of special cases are performed and found to be in excellent agreement. Five different relative positions of the active zones are considered.While circulation depend strongly on the total exit length. Governing parameters were 103 < Gr < 107 but due to space constraints the results for 104 < Gr <107 are presented. It is found that both the Grashof number and solid volume fraction χ affect the fluid flow and heat transfer in the cavity. CopperWater nanofluid is used with Pr = 6.2 and solid volume fraction is varied as 0, 4, 8, 12, 16 and 20 per cent. Detailed results are presented for flow pattern and heat transfer curves.Originality/valueThe present study focusses on the analysis of several parameters on the heat transfer characteristics of nanofluids within the enclosure.


2017 ◽  
Vol 21 (2) ◽  
pp. 963-976 ◽  
Author(s):  
Wael El-Maghlany ◽  
Mohamed Teamah ◽  
A.E. Kabeel ◽  
Ahmed Hanafy

In this study, a numerical simulation of the thermal performance of two ribs mounted over a horizontal flat plate and cooled by Cu-water nanofluid is performed. The plate is heated and maintained at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The top wall is considered as an adiabatic condition. The effects of related parameters such as Richardson number (0.01 ? Ri ? 10), the solid volume fraction (0.01 ? ? ? 0.06), the distance ratio between the two ribs (d/W = 5, 10, and 15), and the rib height ratio (b/W = 1, 2, and 3) on the ribs thermal performance are studied. The numerical simulation results indicate that the heat transfer rate is significantly affected by the distance and the rib height. The heat transfer rate is improved by increasing the nanoparticles volume fraction. The influence of the solid volume fraction with the increase of heat transfer is more noticeable for lower values of the Richardson number. The numerical results are summarized in the effect of pertinent parameters on the average Nusselt number with the assistance of both streamlines and isothermal ones. Throughout the study, the Grashof and Prandtl numbers, for pure water are kept constant at 103 and 6.2, respectively. The numerical work was displayed out using, an in-house computational fluid dynamic code written in FORTRAN, which discretizes non-dimensional forms of the governing equations using the finite volume method and solves the resulting system of equations using Gauss-Seidal method utilizing a tri diagonal matrix algorithm.


2016 ◽  
Vol 33 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. Vijayalakshmi ◽  
S. Srinivas

AbstractThe present study investigates the hydromagnetic pulsating nanofluid flow in a porous channel with thermal radiation. In this work, we considered water as the base fluid and silver (Ag), copper (Cu), alumina (Al2O3) and titanium dioxide (TiO2) as nanoparticles. The Maxwell-Garnetts and Brinkman models are used to evaluate the effective thermal conductivity and viscosity of the nanofluid. The governing equations are solved analytically and the influence of various parameters on velocity, temperature and heat transfer rate has been discussed through graphical results. From the results, it is found that the rate of heat transfer enhances with an increase of nanoparticle volume fraction. Further, the heat transfer rate is higher for silver nanoparticles as compared with copper, alumina and titanium dioxide.


Sign in / Sign up

Export Citation Format

Share Document