Magnetohydrodynamic Natural Convection in a Rotating Enclosure

2016 ◽  
Vol 8 (2) ◽  
pp. 279-292
Author(s):  
H. Saleh ◽  
I. Hashim

AbstractMagnetohydrodynamic natural convection heat transfer in a rotating, differentially heated enclosure is studied numerically in this article. The governing equations are in velocity, pressure and temperature formulation and solved using the staggered grid arrangement together with MAC method. The governing parameters considered are the Hartmann number, 0≤Ha≤70, the inclination angle of the magnetic field, 0°≤θ 90°, the Taylor number, 8.9 x 104≤Ta≤1.1 x 106 and the centrifugal force is smaller than the Coriolis force and the both forces were kept below the buoyancy force. It is found that a sufficiently large Lorentz force neutralizes the effect of buoyancy, inertial and Coriolis forces. Horizontal or vertical direction of the magnetic field was most effective in reducing the global heat transfer.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
H. Saleh ◽  
I. Hashim

Natural convection heat transfer in a rotating, differentially heated enclosure is studied numerically in this paper. The rotating enclosure is filled with water-Ag, water-Cu, water-Al2O3, or water-TiO2nanofluids. The governing equations are in velocity, pressure, and temperature formulation and solved using the staggered grid arrangement together with MAC method. The governing parameters considered are the solid volume fraction,0.0 ≤ ϕ ≤ 0.05, and the rotational speeds,3.5≤ Ω ≤ 17.5 rpm, and the centrifugal force is smaller than the Coriolis force and both forces were kept below the buoyancy force. It is found that the angular locations of the local maximums heat transfer were sensitive to rotational speeds and nanoparticles concentration. The global quantity of heat transfer rate increases about 1.5%, 1.1%, 0.8%, and 0.6% by increasing 1%ϕof the nanoparticles Ag, Cu, Al2O3, and TiO2, respectively, for the considered rotational speeds.


Author(s):  
Fateh Mebarek Oudina ◽  
◽  
Fares Redouane ◽  
Choudhari Rajashekhar ◽  
◽  
...  

This work explores numerically a computational study of free convection in a grooved porous enclosure filled with water-based hybrid-nanoliquid in the presence of an external magnetic field. To solve the governing equations of the problem, the Galerkin finite element technique is utilized. For a several governing parameters such as Rayleigh number (102≤Ra ≤106), magnetic field parameter (0≤Ha≤100), Darcy number (10-2≤ Da ≤10-4) the results are obtained and discussed via streamlines, isotherms and average Nusselt number. The magnetic field has a good regulating effect for the fluid flow and the heat transfer in porous media


2021 ◽  
Vol 11 (4) ◽  
pp. 1722
Author(s):  
Nidal Abu-Libdeh ◽  
Fares Redouane ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Ahmad Almuhtady ◽  
...  

In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O nanofluids and porous media consistent with natural convection and total entropy is examined. The nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity (εp), and the properties of solid volume fraction (ϕ) and flow fields were studied. The findings show that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus the magnetic field can be used as an outstanding heat transfer controller.


2020 ◽  
Vol 92 (1) ◽  
pp. 10904 ◽  
Author(s):  
Rabeh Slimani ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Umair Khan ◽  
M. Sahnoun ◽  
...  

The current study investigates MHD natural convection heat transfer of a hybrid nanofluid in a truncated cone along with transparent domains having the stimulus of an inherent constant magnetic field. The governing equations subject to the physical boundary conditions are solved numerically by using the Galerkin finite element method. The effects of the various parameters involved in the problem such as the Rayleigh number Ra (ranging between 103 and 106), the Hartmann number Ha (ranging between 0 and 60), and the porosity ratio ε (0.1–0.9) are examined. Moreover, the effects of Da which represents the Darcy number (between 10‑3 and 10‑1) and the volume fraction of nanoparticles ϕ for the dissipated nanoparticles of Al2O3-Cu are reported in terms of the streamlines and isotherms distributions as well as the Nusselt number. Such parameters are critical control parameters for both the fluid flow and the rate of heat transfer of the natural convection in the annular space. The solution outcomes proof that the average Nusselt number varies directly with the dynamic field flowing through a porous media, whereas it behaves inversely with the magnetic field.


2016 ◽  
Vol 26 (5) ◽  
pp. 1416-1432 ◽  
Author(s):  
Saman Rashidi ◽  
Javad Abolfazli Esfahani ◽  
Mohammad Sadegh Valipour ◽  
Masoud Bovand ◽  
Ioan Pop

Purpose – The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures. Design/methodology/approach – The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively. Findings – The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions. Originality/value – To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.


Author(s):  
Gustavo Gutierrez ◽  
Ezequiel Medici

The interaction between magnetic fields and convection is an interesting phenomenon because of its many important engineering applications. Due to natural convection motion the electric conductive fluid in a magnetic field experiences a Lorenz force and its effect is usually to reduce the flow velocities. A magnetic field can be used to control the flow field and increase or reduce the heat transfer rate. In this paper, the effect of a magnetic field in a natural convection flow of an electrically conducting fluid in a rectangular cavity is studied numerically. The two side walls of the cavity are maintained at two different constant temperatures while the upper wall and the lower wall are completely insulated. The coupling of the Navier-Stokes equations with the Maxwell equations is discussed with the assumptions and main simplifications assumed in typical problems of magnetohydrodynamics. The nonlinear Lorenz force generates a rich variety of flow patterns depending on the values of the Grashof and Hartmann numbers. Numerical simulations are carried out for different Grashof and Hartmann numbers. The effect of the magnetic field on the Nusselt number is discussed as well as how convection can be suppressed for certain values of the Hartmann number under appropriate direction of the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document