scholarly journals Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Sandeep Mittal ◽  
Alok K. Pandey

Cerium oxide nanoparticles (CeO2NPs) have promising industrial and biomedical applications. In spite of their applications, the toxicity of these NPs in biological/physiological environment is a major concern. Present study aimed to understand the molecular mechanism underlying the toxicity of CeO2NPs on lung adenocarcinoma (A549) cells. After internalization, CeO2NPs caused significant cytotoxicity and morphological changes in A549 cells. Further, the cell death was found to be apoptotic as shown by loss in mitochondrial membrane potential and increase in annexin-V positive cells and confirmed by immunoblot analysis of BAX, BCl-2, Cyt C, AIF, caspase-3, and caspase-9. A significant increase in oxidative DNA damage was found which was confirmed by phosphorylation of p53 gene and presence of cleaved poly ADP ribose polymerase (PARP). This damage could be attributed to increased production of reactive oxygen species (ROS) with concomitant decrease in antioxidant “glutathione (GSH)” level. DNA damage and cell death were attenuated by the application of ROS and apoptosis inhibitors N-acetyl-L- cysteine (NAC) and Z-DEVD-fmk, respectively. Our study concludes that ROS mediated DNA damage and cell cycle arrest play a major role in CeO2NPs induced apoptotic cell death in A549 cells. Apart from beneficial applications, these NPs also impart potential harmful effects which should be properly evaluated prior to their use.

2021 ◽  
Vol 55 (1) ◽  
pp. 1-16

BACKGROUND/AIMS: Exposure to particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are particularly aggravated in patients with pre-existing kidney diseases. Cerium oxide nanoparticles (CNPs), used as diesel fuel additives, are emitted in vehicle exhaust and affect humans when inhaled. However, thrombotic and cardiac injury resulting from pulmonary exposure to CNPs in experimental acute kidney injury (AKI) is not fully understood. The objective of the present study was to evaluate the thrombotic and cardiac injury effects of CNPs in a rat model of AKI. METHODS: AKI was induced in rats by a single intraperitoneal injection of cisplatin (CDDP, 6 mg/kg). Six days after injection, rats were intratracheally (i.t.) instilled with either CNPs (1 mg/kg) or saline (control), and various cardiovascular variables and markers of inflammation, oxidative stress and DNA injury were assessed by enzyme linked immunosorbent assay, colorimetric assay, single-cell gel electrophoresis assay and immunohistochemistry, the following day. RESULTS: Compared with individual CDDP or CNPs treatments, the combined CDDP + CNPs treatment elevated significantly the coagulation function, relative heart weight, and troponin I, lactate dehydrogenase, interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and total nitric oxide levels in the plasma. In heart homogenates, the combination of CDDP and CNPs induced a significant increase in IL-6, TNFα, catalase, and glutathione. Furthermore, significantly more DNA damage was observed in this group than in the CDDP or CNPs groups. Immunohistochemical analysis of the heart revealed that expression of nuclear factor erythroid-derived 2-like 2 (Nrf2) and glutathione peroxidase by cardiac myocytes and endothelial cells was increased in the CDDP + CNPs group more than in either CDDP or CNPs group. CONCLUSION: I.t. administration of CNPs in rats with AKI exacerbated systemic inflammation, oxidative stress, and coagulation events. It also aggravated cardiac inflammation, DNA damage, and Nrf2 expression.


Author(s):  
Rima Thiyam ◽  
Mangamoori Lakshmi Narasu

Objective: The objective of the present study was to investigate the growth inhibitory effect, apoptosis initiation and genotoxic effect of zerumbone (ZER), a phytochemical and cisplatin, a chemotherapeutic drug on human colorectal cancer cell line COLO205 and normal human lymphocytes.Methods: The antiproliferative activity of ZER and cisplatin (positive control) on COLO205 cells and lymphocytes was analysed by 3( 4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide (MTT) assay. Morphological analysis of the cells was studied by using inverted phase contrast microscope. Propidium iodide staining method was used to observe the apoptotic morphological changes in the treated cells. Finally comet assay was conducted to observe the extent of DNA damage induced by ZER and cisplatin on COLO205 and lymphocytes.Results: ZER and cisplatin exhibited growth inhibition in a dose and time dependent manner against COLO205 with no considerable effect on lymphocytes. The IC50 values of ZER on COLO205 for 24h, 48h and 72h were 19 µg/ml, 10 µg/ml and 5 µg/ml. Comparatively the IC50 values of cisplatin on COLO205 for 24h, 48h and 72h were 38 µg/ml, 24 µg/ml and 15 µg/ml.  Morphological changes such as cell shrinkage, membrane blebbing and nuclear condensation were observed in COLO205 while no significant change was observed in lymphocytes. Fluorescence imaging studies confirmed apoptotic cell death in treated COLO205 cells while no significant cell death was observed in treated lymphocytes. Comet assay revealed significant DNA damage in treated COLO205 cells.Conclusion: The present study demonstrated the cytotoxic and genotoxic effect of ZER and cisplatin on COLO205 cells. These drugs showed no significant effect on lymphocytes.


2003 ◽  
Vol 23 (9) ◽  
pp. 997-1009 ◽  
Author(s):  
Diana Katsman ◽  
Jian Zheng ◽  
Kateri Spinelli ◽  
S. Thomas Carmichael

Stroke produces a region of complete cell death and areas of partial damage, injury, and gliosis. The spatial relationship of these regions of damage to the infarct core and within spared neuronal circuits has not been identified. A model of cortical stroke was developed within functional subsets of the somatosensory cortex. Infarct size, regions of apoptosis, oxidative DNA damage, heat shock protein induction, and subtypes of reactive gliosis were precisely mapped with the somatosensory body map, quantified, and interrelated. Three tissue microenvironments were recognized: zones of partial ischemic damage, heat shock protein induction, and distributed gliosis. These three zones involved progressively more distant cortical regions, each larger than the infarct core. The zone of partial ischemic damage represents an overlap region of apoptotic cell death, oxidative DNA damage, loss of synaptic connections, and local reactive gliosis. The zone of distributed gliosis occupies distinct functional areas of the somatosensory cortex. The tissue reorganization induced by stroke is much larger than the stroke site itself. Adjacent tissue microenvironments are sites of distinct reactive cellular signaling and may serve as a link between the processes of acute cell death and delayed neuronal plasticity after focal stroke.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 376 ◽  
Author(s):  
Abderrahim Nemmar ◽  
Suhail Al-Salam ◽  
Sumaya Beegam ◽  
Priya Yuvaraju ◽  
Badreldin Ali

Pulmonary exposure to cerium oxide nanoparticles (CeO2 NPs) can occur either at the workplace, or due to their release in the environment. Inhaled CeO2 NPs are known to cross the alveolar–capillary barrier and reach various parts of the body, including the vasculature. The anticancer drug cisplatin (CP) causes vascular damage. However, the effects CeO2 NPs on vascular homeostasis in a rat model of CP-induced vascular injury remain unclear. Here, we assessed the impact and underlying mechanism of pulmonary exposure to CeO2 NPs on aorta in rats given a single intraperitoneal injection of cisplatin (CP, 6 mg/kg) to induce vascular damage. Six days later, the rats were intratracheally instilled with either CeO2 NPs (1 mg/kg) or saline (control), and various variables were studied 24 h thereafter in the aortic tissue. The concentration of reduced glutathione and the activity of catalase were significantly increased in the CP + CeO2 NPs group compared with both the CP + saline and the CeO2 NPs groups. The activity of superoxide dismutase was significantly decreased in the CP + CeO2 NPs group compared with both the CP + saline and CeO2 NPs groups. The expression of nuclear factor erythroid-derived 2-like 2 (Nrf2) by the nuclei of smooth muscles and endocardial cells assessed by immunohistochemistry was significantly augmented in CeO2 NPs versus saline, in CP + saline versus saline, and in CP + CeO2 NPs versus CeO2 NPs. Moreover, the concentrations of total nitric oxide, lipid peroxidation and 8-hydroxy-2-deoxyguanosine were significantly elevated in the CP + CeO2 NPs group compared with both the CP + saline and the CeO2 NPs groups. Similarly, compared with both the CP + saline and CeO2 NPs groups, the combination of CP and CeO2 NPs significantly elevated the concentrations of interleukin-6 and tumour necrosis factor-α. Additionally, aortic DNA damage assessed by Comet assay was significantly increased in CeO2 NPs compared with saline, and in CP + saline versus saline, and all these effects were significantly aggravated by the combination of CP and CeO2 NPs. We conclude that pulmonary exposure to CeO2 NPs aggravates vascular toxicity in animal model of vascular injury through mechanisms involving oxidative stress, Nrf2 expression, inflammation and DNA damage.


2013 ◽  
Vol 13 (1) ◽  
pp. 204-215 ◽  
Author(s):  
Xiangyan Zhou ◽  
Bing Wang ◽  
Yiqi Chen ◽  
Zhengwei Mao ◽  
Changyou Gao

2019 ◽  
Vol 24 (40) ◽  
pp. 4726-4741 ◽  
Author(s):  
Orathai Tangvarasittichai ◽  
Surapon Tangvarasittichai

Background: Oxidative stress is caused by free radicals or oxidant productions, including lipid peroxidation, protein modification, DNA damage and apoptosis or cell death and results in cellular degeneration and neurodegeneration from damage to macromolecules. Results: Accumulation of the DNA damage (8HOdG) products and the end products of LPO (including aldehyde, diene, triene conjugates and Schiff’s bases) were noted in the research studies. Significantly higher levels of these products in comparison with the controls were observed. Oxidative stress induced changes to ocular cells and tissues. Typical changes include ECM accumulation, cell dysfunction, cell death, advanced senescence, disarrangement or rearrangement of the cytoskeleton and released inflammatory cytokines. It is involved in ocular diseases, including keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, cataract, age-related macular degeneration, primary open-angle glaucoma, retinal light damage, and retinopathy of prematurity. These ocular diseases are the cause of irreversible blindness worldwide. Conclusions: Oxidative stress, inflammation and autophagy are implicated in biochemical and morphological changes in these ocular tissues. The development of therapy is a major target for the management care of these ocular diseases.


Sign in / Sign up

Export Citation Format

Share Document