scholarly journals Evaluation of Power Saving and Feasibility Study of Migrations Solutions in a Virtual Router Network

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
V. Eramo ◽  
S. Testa ◽  
E. Miucci

The power consumption of the network equipment has increased significantly and some strategies to contain the power used in the IP network are needed. Among the green networking strategies, the virtualization class and in particular the deployment of migrating virtual routers can lead to a high energy saving. It consists in migrating virtual routers in fewer physical nodes when the traffic decreases allowing for a power consumption saving. In this paper we formulate the problem of minimizing the power consumption as a Mixed Integer Linear Programming (MILP) problem. Due to the hard complexity of the introduced MILP problem, we propose a heuristic for the migration of virtual routers among physical devices in order to turn off as many nodes as possible and save power according to the compliance with network node and link capacity constraints. We show that 50% of nodes may be turned off in the case of a real provider network when traffic percentage reduction of 80% occurs. Finally we also perform a feasibility study by means of an experimental test-bed to evaluate migration time of a routing plane based on QUAGGA routing software.

2013 ◽  
Vol 9 (3) ◽  
pp. 241-260 ◽  
Author(s):  
Fuu-Cheng Jiang ◽  
Hsiang-Wei Wu ◽  
Fang-Yi Leu ◽  
Chao-Tung Yang

Power efficiency is a crucially important issue in the IEEE 802.15.4/ZigBee sensor networks (ZSNs) for majority of sensor nodes equipped with non-rechargeable batteries. To increase the lifetime of sensor networks, each node must optimize power consumption as possible. Among open literatures, much research works have focused on how to optimally increase the probability of sleeping states using multifarious wake-up strategies. Making things different, in this article, we propose a novel optimization framework for alleviating power consumption of sensor node with the D-policy M/G/1 queuing approach. Toward green sensor field, the proposed power-saving technique can be applied to prolong the lifetime of ZSN economically and effectively. For the proposed data aggregation model, mathematical framework on performance measures has been formulated. Data simulation using MATLAB tool has been conducted for exploring the feasibility of the proposed approach. And also we analyze the average traffic load per node for tree-based ZSN. Focusing on ZigBee routers deployed at the innermost shell of ZSN, network simulation results validate that the proposed approach indeed provides a feasibly cost-effective approach for prolonging lifetime of ZSNs.


2009 ◽  
Vol 67 (2) ◽  
pp. 324-328 ◽  
Author(s):  
Jeong-Eun Rah ◽  
Siyong Kim ◽  
Kwang-Ho Cheong ◽  
Jeong-Woo Lee ◽  
Jin-Beom Chung ◽  
...  

2015 ◽  
Vol 53 (5) ◽  
pp. 250-256 ◽  
Author(s):  
Andrea Francini ◽  
Steven Fortune ◽  
Thierry Klein ◽  
Marco Ricca

Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing combines the advantages of several computing paradigms and introduces ubiquity in the provisioning of services such as software, platform, and infrastructure. Data centers, as the main hosts of cloud computing services, accommodate thousands of high performance servers and high capacity storage units. Offloading the local resources increases the energy consumption of the transport network and the data centers although it is advantageous in terms of energy consumption of the end hosts. This chapter presents a detailed survey of the existing mechanisms that aim at designing the Internet backbone with data centers and the objective of energy-efficient delivery of the cloud services. The survey is followed by a case study where Mixed Integer Linear Programming (MILP)-based provisioning models and heuristics are used to guarantee either minimum delayed or maximum power saving cloud services where high performance data centers are assumed to be located at the core nodes of an IP-over-WDM network. The chapter is concluded by summarizing the surveyed schemes with a taxonomy including the cons and pros. The summary is followed by a discussion focusing on the research challenges and opportunities.


2020 ◽  
Vol 10 (5) ◽  
pp. 1627 ◽  
Author(s):  
Himanshu Nagpal ◽  
Andrea Staino ◽  
Biswajit Basu

In this work, an algorithm for the scheduling of household appliances to reduce the energy cost and the peak-power consumption is proposed. The system architecture of a home energy management system (HEMS) is presented to operate the appliances. The dynamics of thermal and non-thermal appliances is represented into state-space model to formulate the scheduling task into a mixed-integer-linear-programming (MILP) optimization problem. Model predictive control (MPC) strategy is used to operate the appliances in real-time. The HEMS schedules the appliances in dynamic manner without any a priori knowledge of the load-consumption pattern. At the same time, the HEMS responds to the real-time electricity market and the external environmental conditions (solar radiation, ambient temperature, etc.). Simulation results exhibit the benefits of the proposed HEMS by showing the reduction of up to 70% in electricity cost and up to 57% in peak power consumption.


2020 ◽  
Vol 225 ◽  
pp. 09001
Author(s):  
Adrien Sari ◽  
Sara Garti ◽  
Frédéric Lainé ◽  
Frédérick Carrel ◽  
Jonathan Dumazert ◽  
...  

In the frame of a partnership between CEA and VINCI, various measurement techniques are applied to soil analysis and tested in different laboratories located at CEA Saclay (France). This paper deals with two nuclear measurement techniques assessed in this project. More specifically, this paper presents the feasibility study carried out for two non-destructive active methods: photon activation and neutron activation. First, some atomic nuclides are activated either by photons or neutrons. Secondly, gamma-rays of specific energies are emitted by activated nuclides and gamma-ray spectrometry enables to identify these activated nuclides. Calibration of the full measurement system with reference samples would enable to quantify the mass of activated nuclides. Irradiations performed for photon activation measurements were conducted using a linear electron accelerator (linac) as the latter enables to generate high-energy photons by Bremsstrahlung thanks to its conversion target. Furthermore, irradiations performed for neutron activation measurements were also conducted with a linac. Indeed, photons may be converted to neutrons by photonuclear reactions using a secondary target. In the frame of this project, experiments were carried out at the SAPHIR platform (CEA Saclay) with a Linatron-M9 VARIAN linac. The electron energy was either 6 or 9 MeV. For neutron activation measurements, a secondary target made of heavy water has been used as neutron source and a polyethylene cell enabled to thermalize neutrons and increase the number of reactions of interest. In this paper, we present the different experimental setups and the measurement protocols established for this feasibility study. We show experimental results obtained with raw material samples coming from three construction sites.


2015 ◽  
Vol 738-739 ◽  
pp. 107-110
Author(s):  
Hui Lin

A Wireless Sensor Network is composed of sensor nodes powered by batteries. Thus, power consumption is the major challenge. In spite of so many research works discussing this issue from the aspects of network optimization and system design, so far not so many focus on optimizing power consumption of the Radio Frequency device, which consumes most of the energy. This paper describes the digital features of the Radio Frequency device used to optimize current consumption, and presents a practical approach to measure current consumption in static and dynamic scenarios in details, by which we evaluates the power saving effect. The results demonstrated that according to cycle times and application characteristics choosing appropriate features can prolong the lifetime of wireless sensor nodes.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Fariborz Entezami ◽  
Meiling Zhu ◽  
Christos Politis

AbstractThere is a big challenge for research and industrial engineers to apply energy harvesting powered wireless sensors for practical applications. This is because wireless sensors is very power hungry while current energy harvesting systems can only harvest very limited energy from the ambient environment. In order for wireless sensors to be operated based on the limited energy harvested, understanding of power consumption of wireless sensors is the first task for implementation of energy harvesting powered wireless sensors systems. In this research an energy consumption model has been introduced for wireless sensor nodes and the power consumption in the life cycle of wireless communication sensors, consisting of JN5148 microcontroller and custom built sensors: a 3-axial accelerometer, a temperature sensor and a light sensor, has been studied. All measurements are based on a custom-built test bed. The power required carrying out a life cycle of wireless sensing and transmission is analysed. This paper describes how to analyse the current consumption of the system in active mode and thus power Consumption for sleeping and deployed sensors mode. The results show how much energy needs to run the energy harvesting powered wireless sensor node with JN5148 microcontroller.


Sign in / Sign up

Export Citation Format

Share Document