scholarly journals Diffractive Optical Elements with a Large Angle of Operation Recorded in Acrylamide Based Photopolymer on Flexible Substrates

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hoda Akbari ◽  
Izabela Naydenova ◽  
Lina Persechini ◽  
Sean M. Garner ◽  
Pat Cimo ◽  
...  

A holographic device characterised by a large angular range of operation is under development. The aim of this study is to increase the angular working range of the diffractive lens by stacking three layers of high efficiency optical elements on top of each other so that light is collected (and focussed) from a broader range of angles. The angular range of each individual lens element is important, and work has already been done in an acrylamide-based photosensitive polymer to broaden the angular range of individual elements using holographic recording at a low spatial frequency. This paper reports new results on the angular selectivity of stacked diffractive lenses. A working range of 12° is achieved. The diffractive focussing elements were recorded holographically with a central spatial frequency of 300 l/mm using exposure energy of 60 mJ/cm2at a range of recording angles. At this spatial frequency with layers of thickness 50 ± 5 µm, a diffraction efficiency of 80% and 50% was achieved in the single lens element and combined device, respectively. The optical recording process and the properties of the multilayer structure are described and discussed. Holographic recording of a single lens element is also successfully demonstrated on a flexible glass substrate (Corning(R) Willow(R) Glass) for the first time.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sergi Gallego ◽  
Andrés Márquez ◽  
Manuel Ortuño ◽  
Cristian Neipp ◽  
Inmaculada Pascual ◽  
...  

Photopolymers are useful for different holographic applications such as holographic data storage or diffractive optical elements. However, due to the presence of two different phenomena, polymer formation and monomer diffusion, it is difficult to characterize each parameter independently. We propose a direct method based on zero spatial frequency recording, to eliminate the diffusion influence, and on interferometric techniques, both in transmission and in reflection, to obtain quantitative values of shrinkage, polymerization rate, polymer refractive index and relation between intensity and polymerization, and so forth, This method has been implemented in the Holography and Optical Processing Group from the University of Alicante to characterize different photopolymers. In this paper, we present a compilation of the results obtained with this method for different photopolymers and we compare their characteristics.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Yun-Han Lee ◽  
Guanjun Tan ◽  
Tao Zhan ◽  
Yishi Weng ◽  
Guigeng Liu ◽  
...  

AbstractIn this review paper,we report recent progress on Pancharatnam-Berry (PB) phase optical elements, such as lens, grating, and deflector. PB lenses exhibit a fast switching time between two or more focal lengths with large diopter change and aperture size, which is particularly attractive for addressing the accommodation mismatch in head-mounted display devices. On the other hand, PB gratings and deflectors offer a large-angle beam deflection with wide acceptance cone and high efficiency, as compared to conventional volume gratings. Such merits provide great advantages for waveguide-coupling augmented reality headsets. Moreover, the thickness of PB optical elements is only a few micrometers, thus they can be conveniently integrated into modern wearable display systems.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziqian He ◽  
Kun Yin ◽  
Shin-Tson Wu

AbstractNon-mechanical beam steerers with lightweight, compact, high-efficiency, high-precision, and/or large-angle are pivotal for light detection and ranging (LiDAR) of autonomous vehicles, eye-tracking for near-eye displays, microscopy, optical tweezers, and high-precision three-dimensional (3D) printing. However, even the most matured optical phased array can only provide quasi-continuous, efficient beam steering within a small angle range. A telescope module with an angle magnification function can be coupled to enlarge the steering range or precision. But obtaining a compact, low-cost, lightweight, high-quality telescope module with conventional optics remains challenging. Patterned liquid crystal-based planar optical elements offer great design freedom for manipulating the phase profile of light in 2D space. Owing to the advantages of high efficiency, thinness, low cost, easy processing, flexibility, and response to environmental stimuli, a plethora of high-quality optical devices have been demonstrated. Here, a miniature planar telescope mediated by liquid crystal polymers is proposed to offer angle magnification independent of incident spatial location. It consists of two cascaded liquid crystal planar optical elements, each performing a predefined mathematical transformation. By this concept, planar optical elements are fabricated using a new exposure method and assembled into planar telescopes with different magnification factors. Within the incident field range, over 84.6% optical efficiency is achieved with small wavefront distortion. Such a miniature planar telescope shows the potential of cascaded liquid crystal planar optical elements for realizing functionalities that cannot be fulfilled by single optical elements, and enables lightweight, low loss, passive optical transmitters for widespread applications.


Author(s):  
Dimana Nazarova ◽  
Lian Nedelchev ◽  
Svetlana Mintova

AbstractHybrid organic/inorganic materials based on combination of polymers and inorganic nanoparticles (NP) attract considerable attention due to their advantageous electrical, optical, or mechanical properties. Recently it was reported that doping photopolymers with nanoparticles allows to achieve near 100% net diffraction efficiency in case of conventional holographic recording. Thus, we have synthesized novel organic/inorganic composite materials by incorporating MFI (Mordenite Framework Inverted) type zeolite nanoparticles in an amorphous side-chain azopolymer. A considerable improvement of the photoresponse in thin films of these composite materials has been observed compared to the non-doped samples - nearly 25% increase of the saturated value of the birefringence.Moreover the photoinduced birefringence is stable in time which allows these materials to be used as media for diffractive optical elements with high efficiency and unique polarization properties.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chun-Yuan Fan ◽  
Chia-Ping Lin ◽  
Guo-Dung J. Su

Abstract Wide-angle optical systems play a vital role in imaging applications and have been researched for many years. In traditional lenses, attaining a wide field of view (FOV) by using a single optical component is difficult because these lenses have crucial aberrations. In this study, we developed a wide-angle metalens with a numerical aperture of 0.25 that provided a diffraction-limited FOV of over 170° for a wavelength of 532 nm without the need for image stitching or multiple lenses. The designed wide-angle metalens is free of aberration and polarization, and its full width of half maximum is close to the diffraction limit at all angles. Moreover, the metalens which is designed through a hexagonal arrangement exhibits higher focusing efficiency at all angles than most-seen square arrangement. The focusing efficiencies are as high as 82% at a normal incident and 45% at an incident of 85°. Compared with traditional optical components, the proposed metalens exhibits higher FOV and provides a more satisfactory image quality because of aberration correction. Because of the advantages of the proposed metalens, which are difficult to achieve for a traditional single lens, it has the potential to be applied in camera systems and virtual and augmented reality.


2019 ◽  
Vol 46 (11) ◽  
pp. 1102001
Author(s):  
赖璐文 Lai Luwen ◽  
刘志刚 Liu Zhigang ◽  
焦翔 Jiao Xiang ◽  
朱健强 Zhu Jianqiang

2020 ◽  
Vol 18 (7) ◽  
pp. 073601
Author(s):  
Weiyi Shi ◽  
Weimin Deng ◽  
Weinan Liu ◽  
Zepeng Zhuang ◽  
Zhibin Fan ◽  
...  
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5721
Author(s):  
Sarah El Himer ◽  
Salima El Ayane ◽  
Sara El Yahyaoui ◽  
Jean Paul Salvestrini ◽  
Ali Ahaitouf

Concentrator Photovoltaic (CPV) technology, by using efficient optical elements, small sizes and high efficiency multi-junction solar cells, can be seen as a bright energy source to produce more cost-effective electricity. The main and basic idea is to replace the use of expensive solar cells with less expensive optical elements made from different materials. This paper aims to give to the readers a rapid and concise overview of CPV and the main characteristics to be considered when designing a CPV system. It reviews the main optical configurations presented in the literature, their advantages and drawbacks, as well as the recent progress in the concentration ratio and the major performances achieved in the field. The paper considers the more recent works, their optical designs, as well as their optical and electrical performances. It also relates the major achievements on the industrial side with the major milestones in CPV developments.


2020 ◽  
Vol 861 ◽  
pp. 159-164
Author(s):  
Chang Song Zhao ◽  
Jun Yong Wu ◽  
Fan Zhong Chu ◽  
Kai Rui Zhao ◽  
Lei Yu

Micro-structured optical film is one of the micro-optical elements and has a great market demand. This article studies the microstructured optical film formed by UV imprinting: The influence of embossing pressure on microstructure replication accuracy was explored. The larger the pressure, the better the material filling. When the pressure is 5N, the microstructure replication is complete; The relationship between the radiation intensity and warpage deformation was explored, and the decrease in the intensity of the UV light source can effectively reduce the warpage deformation; The influence of the material formula on the optical properties of the product was explored. When the oligomer content was 55%, the film had a high light transmittance. At the same time, the prepared film was subjected to an apparent inspection with good microstructure replication accuracy.Microstructured optical elements are widely used in optical fields such as semiconductors, lasers, beam shaping [1-2] and solar energy [3-5] due to their unique advantages such as small size and high performance. As a key component in many industries, it has a high market demand rate. However, the microstructure forming process is complicated, the manufacturing cost is high, and the accuracy is difficult to guarantee, which has restricted its development. With the advancement of science and technology and the increase in market demand, more and more researchers and enterprises have put their eyes on the research of preparing micro-structured optical elements.At present, the commonly used microstructures are mainly icrolens array [6-8], and the processing methods include micro-imprinting [9-10], etching [11], electron beam direct writing, and micro-injection [12], etc. This article studies the UV-curing embossing process in micro-embossing. This processing method has the advantages of fast molding, high efficiency, and environmental protection. And this process is conducive to mass production and has a broad market application prospect.In this paper, the forming process and material formulation of microstructured optical film prepared by light-cured micro-imprinting were investigated, and the microstructure morphology of the preparation was analyzed apparently.


Sign in / Sign up

Export Citation Format

Share Document