scholarly journals Transition Metal Complexes of Omeprazole An Anti-Ulcerative Drug

2017 ◽  
Vol 36 (3) ◽  
pp. 31 ◽  
Author(s):  
Suman Malik ◽  
Supriya Das ◽  
Bharti Jain

Omeprazole (OME) is a proton pump inhibitor (PPI). PPI’s have enabled to improve the treatment of various acidpeptic disorders. OME is a weak base and it can form several complexes with transition and non-transitions metal ions. In the present paper, we are describing series of trantion metal complexes of omeprazole i.e.,5-methoxy-2[(4methoxy-3,5dimethyl-2-pyridinyl)methylsulfinyl]–1H–benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductance, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups .The complexes were found to non-electrolytic in nature on the basis of low values of molar conductance . Analytical data and stochiometry suggest ligand metal ratio of 2:1 for all the complexes. Electronic Spectra and Magnetic susceptibility measurements reveal octahedral geometry for Mn(II),Co(II), Ni(II),Fe(II) and Cu(II) complexes and tetrahedral for Hg(II) and Zn(II) complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus Aureus and fungi Aspergillus niger and A. flavous.

2010 ◽  
Vol 10 (3) ◽  
pp. 382-389
Author(s):  
Suman Malik ◽  
Supriya Das ◽  
Bharti Jain

Omeprazole (OME) is a proton pump inhibitor (PPI). PPIs have enabled to improve the treatment of various acid-peptic disorders. OME is a weak base and it can form several complexes with transition and non-transition metal ions. In the present paper, we are describing series of transition metal complexes of omeprazole i.e., 5-methoxy-2[(4methoxy-3, 5dimethyl-2-pyridinyl) methylsulfinyl]-1H-benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductivity, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups. The complexes were found to non-electrolytic in nature on the basis of low values of molar conductivity. Analytical data and stoichiometry analysis suggest ligand to metal ratio of 2:1 for all the complexes. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for Mn(II),Co(II), Ni(II),Fe(II) and Cu(II) complexes and tetrahedral for Hg(II) and Zn(II) complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus aureus and fungi Aspergillus niger and A. flavous.


1970 ◽  
Vol 34 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Tarun Kumar Pal ◽  
Md Ashraful Alam ◽  
Suchitra Rani Paul

New metal complexes of Mg(II), VO(II), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Pd(II) with cyanex 301(L) i.e., bis(2,4,4-trimethylpentyl) dithiophosphinic acid were synthesized. The complexes have been characterized by elemental analysis, molar conductivity, molecular mass determination, magnetic measurements, infrared and electronic spectral studies. The prepared metal complexes have the compositions: 2. [MgL2].H2O, 3. [VOL2], 4. K[MnL3].H2O, 5. [FeL3], 6. K[CoL3].H2O, 7. K[NiL3], 8. K[CuL3] and 9. [PdL2]. The complexes 2, 3 and 9 are assumed to have tetrahedral, square pyramidal and square planar geometries, respectively but the complexes 4 - 8 are octahedral based on experimental data. From magnetic measurements the complexes 2 and 9 are found to be diamagnetic and others are paramagnetic. Measured molar conductance showed that the complexes 2, 3, 5 and 9 are non-electrolytes and rest are electrolytes. Besides, some complexes have shown good antibacterial and antifungal activities. Key words: Cyanex 301; Antibacterial; Antifungal; DMSO; Bis (2, 4, 4-trimethylpentyl) dithiophosphinic acid DOI: 10.3329/jbas.v34i2.6859Journal of Bangladesh Academy of Sciences, Vol. 34, No. 2, 153-161, 2010


Author(s):  
Mallikarjun S. Yadawe ◽  
Shrishila N. Unki ◽  
Sangamesh A. Patil

Some lanthanum(III) complexes have been synthesized by reacting lanthanum(III) metal salt with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and glyoxal/biacetyl/benzyl. All these complexes are not soluble in common organic solvents. However sparingly soluble in DMF and DMSO. The chemical analysis of the complexes confirmed to the stoichiometry of the type La(III)LNO3·H2O. La(III)LCl·H2O and La(III)LNCS·H2O respectively. The chelation of the complexes has been proposed in the light of analytical, spectral studies. The measured molar conductance values indicate that, the complexes are non-electrolytes. The Schiff bases and their complexes have been screened for their antibacterial and antifungal activities. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed coumarins.


2020 ◽  
Vol 32 (12) ◽  
pp. 3197-3202
Author(s):  
Rajeev Kumar ◽  
Sanjay Kumar ◽  
Madhu Bala

The complexes of Co(II), Ni(II), Zn(II) and Cd(II) with isatinylsemicarbazone (IstscabH) and isatinylthiosemicarbazone (IsttscabH) of composition ML2·2H2O [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and ML2 [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have been synthesized and their antibacterial activity has been investigated. Their inclusion complexes with β-cyclodextrin (β-CD) having composition [ML2(β-CD)·2H2O] or M(C60H88N8O39S2)], [M = Co(II) or Ni(II) and LH = IstscabH or IsttscabH] and [ML2(β-CD) or M(C60H84N6O-37S2)], [M = Zn(II) or Cd(II) and LH = IstscabH or IsttscabH] have also been isolated in solid states. All the synthesized metal complexes have been characterized by analytical data, molar conductance, magnetic susceptibility, electronic and infrared spectral studies. The tetrahedral geometry for Zn(II) and Cd(II) and octahederal geometry for Co(II) and Ni(II) have been assigned on the basis of magnetic susceptibility, UV electronic transitions and IR spectral bands assignments. The structures are retained in inclusion products. A biological activity of Schiff bases, their metal complexes and inclusion products for bacteria Escherichia. coli, Bacillus subtilis and Staphylococcus aureus have been screened and activity explained.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
R. B. Sumathi ◽  
M. B. Halli

A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass,1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2and MLCl2where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method.


2020 ◽  
Vol 13 (3) ◽  
pp. 265-273
Author(s):  
Bekele Yirga ◽  
Achalu Chimdi ◽  
P.Thillai Arasu

In this study, Complexes of Co (II) and Ni (II) ions with Ruhmann’s purple (ligand) were successfully synthesized and characterized. The complexes of NiL2and CoL2were synthesized by using template condensation synthesis method and characterized by melting point, solubility, elemental analysis, and molar conductance, and magnetic susceptibility, infrared and electronic spectral studies. The complexes, NiL2and CoL2 are soluble in ethanol, partially soluble in Diethyl ether and chloroform and insoluble in hexane and petroleum ether. The complexes, NiL2and CoL2 neither melt nor decompose up to 4200C. The molar conductance of NiL2and CoL2 was 42 Scm2/mol and 46Scm2/mol in respectively. The molar magnetic susceptibility of two complexes was 1.74 BM for NiL2 and 2.76 BM for CoL2. The metal to ligand ratio of both metal complexes was 1:2; both metal complexes are non-electrolytes in ethanol and are paramagnetic at 210C. Based on the spectral data and other analytical data, monobasic ONO donor behavior of the ligand (Ruhmann’s purple) generates octahedral geometry for the pink-green colored Ni (II) complex and green colored Co (II) complex.


2009 ◽  
Vol 6 (3) ◽  
pp. 615-624 ◽  
Author(s):  
K. Siddappa ◽  
K. Mallikarjun ◽  
Tukaram Reddy ◽  
M. Mallikarjun ◽  
C. V. Reddy ◽  
...  

A new complexes of the type ML, MʹL and M″L [where M=Cu(II), Co(II), Ni(II) and Mn(II), Mʹ=Fe(III) and M″=Zn(II), Cd(II) and Hg(II) and L=N1-[(1E)-1-(2-hydroxyphenyl)ethylidene]-2-oxo-2H-chromene- 3-carbohydrazide (HL)] Schiff base have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR,1H NMR, UV-Visible and ESR data. The studies indicate the HL acts as doubly monodentate bridge for metal ions and form mononuclear complexes. The complexes Ni(II), Co(II), Cu(II) Mn(II) and Fe(III) complexes are found to be octahedral, where as Zn(II), Cd(II) and Hg(II) complexes are four coordinated with tetrahedral geometry. The synthesized ligand and its metal complexes were screened for their antimicrobial activity.


Author(s):  
VAIRALAKSHMI M ◽  
PRINCESS R ◽  
JOHNSON RAJA S

Objectives: The aim of our work was to synthesize novel mixed ligand-metal complexes and evaluation of antimicrobial, antioxidant assay, and analysis of catalytic oxidation of cyclohexane. Methods: The complexes were characterized by means of various physicochemical techniques such as elemental analysis, molar conductance, magnetic susceptibility, infrared (IR), electronic absorption, 1H NMR (proton magnetic resonance), and mass spectral studies. The antimicrobial screening study was done by disc diffusion method. The catalytic activity of the complexes was observed in the oxidation of cyclohexane using eco-friendly hydrogen peroxide as oxidant. Results: On comparing the 1H NMR and IR spectral data of free ligand and its complexes, it was found to be azomethine (CH=N) proton which is formed in the free ligand. During complexation, the azomethine proton is coordinated to the metal ion and the phenolic oxygen is coordinated to the metal ion by deprotonation. The analytical data and mass spectra of the ligand and the complexes confirm the stoichiometry of metal complexes as being of the (MLY)Cl type and the metal to ligand ratio is 1:1. The antimicrobial, antioxidant, and catalytic potential were evaluated and the result shows the better activity of the complexes than the ligand. Conclusion: It was found to be copper(II) and zinc(II) complexes which are effective against all the bacteria when compared to standard drug streptomycin. Copper(II) complex was found to be effective antibacterial agent against Aspergillus niger and Aspergillus flavus in comparison to the standard drug Nystatin. The zinc complex exhibited good catalytic activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Mohamed A. Riswan Ahamed ◽  
Raja S. Azarudeen ◽  
N. Mujafar Kani

Terpolymer of 2-amino-6-nitro-benzothiazole-ethylenediamine-formaldehyde (BEF) has been synthesized and characterized by elemental analysis and various spectral techniques like FTIR, UV-Visible, and1H and13C-NMR. The terpolymer metal complexes were prepared with Cu2+, Ni2+, and Zn2+metal ions using BEF terpolymer as a ligand. The complexes have been characterized by elemental analysis and IR, UV-Visible, ESR,1H-NMR, and13C-NMR spectral studies. Gel permeation chromatography was used to determine the molecular weight of the ligand. The surface features and crystalline behavior of the ligand and its complexes were analyzed by scanning electron microscope and X-ray diffraction methods. Thermogravimetric analysis was used to analyze the thermal stability of the ligand and its metal complexes. Kinetic parameters such as activation energy(Ea)and order of reaction (n) and thermodynamic parameters, namely,ΔS,ΔF,S*, andZ, were calculated using Freeman-Carroll (FC), Sharp-Wentworth (SW), and Phadnis-Deshpande (PD) methods. Thermal degradation model of the terpolymer and its metal complexes was also proposed using PD method. Biological activities of the ligand and its complexes were tested againstShigella sonnei,Escherichia coli,Klebsiellaspecies,Staphylococcus aureus,Bacillus subtilis, andSalmonella typhimuriumbacteria andAspergillus flavus,Aspergillus niger,Penicilliumspecies,Candida albicans,Cryptococcus neoformans,Mucor speciesfungi.


Author(s):  
SIVAKAMI SUDHASANKAR

Objective: Coordination compounds occur widely in nature and they comprise a large share of current inorganic research. The Mannich reaction is a classic method for the preparation of Mannich bases, namely, β amino compounds, which are heterocyclic. Methods: A novel Mannich base of N-((3,4-dimethoxyphenyl)(2,5-dioxopyrrolidin-1-yl) methyl)benzamide and its coordination complexes with transition metals Mn and Co have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, UV-Visible, IR, NMR, and Mass spectral studies. Results: Based on the magnetic moment and UV-Visible spectral data, octahedral geometries were assigned for the metal complexes. The metal complexes were screened for antifungal activity. Conclusion: the metal complexes have shown good activity than the ligand. The binding of selected metal complexes with calf thymus DNA was investigated. It is found that the cobalt (II) metal complex of the ligand showed efficient DNA binding ability.


Sign in / Sign up

Export Citation Format

Share Document