scholarly journals Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Han Wu ◽  
Shizhen Qu ◽  
Dongdong Xu ◽  
Chunlin Chen

Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR) with wireless sensor network- (WSN-) based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication) global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach.

2014 ◽  
Vol 701-702 ◽  
pp. 1025-1028
Author(s):  
Yu Zhu Liang ◽  
Meng Jiao Wang ◽  
Yong Zhen Li

Clustering the sensor nodes and choosing the way for routing the data are two key elements that would affect the performance of a wireless sensor network (WSN). In this paper, a novel clustering method is proposed and a simple two-hop routing model is adopted for optimizing the network layer of the WSN. New protocol is characterized by simplicity and efficiency (SE). During the clustering stage, no information needs to be shared among the nodes and the position information is not required. Through adjustment of two parameters in SE, the network on any scale (varies from the area and the number of nodes) could obtain decent performance. This work also puts forward a new standard for the evaluation of the network performance—the uniformity of the nodes' death—which is a complement to merely taking the system lifetime into consideration. The combination of these two aspects provides a more comprehensive guideline for designing the clustering or routing protocols in WSN.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Iram Javed ◽  
Xianlun Tang ◽  
Kamran Shaukat ◽  
Muhammed Umer Sarwar ◽  
Talha Mahboob Alam ◽  
...  

In a wireless sensor network (WSN), node localization is a key requirement for many applications. The concept of mobile anchor-based localization is not a new concept; however, the localization of mobile anchor nodes gains much attention with the advancement in the Internet of Things (IoT) and electronic industry. In this paper, we present a range-free localization algorithm for sensors in a three-dimensional (3D) wireless sensor networks based on flying anchors. The nature of the algorithm is also suitable for vehicle localization as we are using the setup much similar to vehicle-to-infrastructure- (V2I-) based positioning algorithm. A multilayer C-shaped trajectory is chosen for the random walk of mobile anchor nodes equipped with a Global Positioning System (GPS) and broadcasts its location information over the sensing space. The mobile anchor nodes keep transmitting the beacon along with their position information to unknown nodes and select three further anchor nodes to form a triangle. The distance is then computed by the link quality induction against each anchor node that uses the centroid-based formula to compute the localization error. The simulation shows that the average localization error of our proposed system is 1.4 m with a standard deviation of 1.21 m. The geometrical computation of localization eliminated the use of extra hardware that avoids any direct communication between the sensors and is applicable for all types of network topologies.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Wang ◽  
Dongming Peng ◽  
Honggang Wang ◽  
Hamid Sharif ◽  
Hsiao-Hwa Chen

Resource allocation for multimedia selective encryption and energy efficient transmission has not been fully investigated in literature for wireless sensor networks (WSNs). In this article, we propose a new cross-layer approach to optimize selectively encrypted image transmission quality in WSNs with strict energy constraint. A new selective image encryption approach favorable for unequal error protection (UEP) is proposed, which reduces encryption overhead considerably by controlling the structure of image bitstreams. Also, a novel cross-layer UEP scheme based on cipher-plain-text diversity is studied. In this UEP scheme, resources are unequally and optimally allocated in the encrypted bitstream structure, including data position information and magnitude value information. Simulation studies demonstrate that the proposed approach can simultaneously achieve improved image quality and assured energy efficiency with secure transmissions over WSNs.


Author(s):  
N. N. N. Abd. Malik ◽  
M. Esa ◽  
S. K. S. Yusof ◽  
S. A. Hamzah ◽  
M. K. H. Ismail

This chapter presents an intelligent method of optimising the radiation beam of wireless sensor nodes in Wireless Sensor Network (WSN). Each node has the feature of a monopole antenna. The optimisation involves selection of nodes to be organised as close as possible to a uniform linear array (ULA) in order to minimise the position errors, which will improve the radiation beam reconfiguring performance. Instead of utilising random beamforming, which needs a large number of sensor nodes to interact with each other and form a narrow radiation beam, the developed optimisation algorithm is emphasized to only a selected number of sensor nodes which can construct a linear array. Thus, the method utilises radiation beam reconfiguration technique to intelligently establish a communication link in a WSN.


10.5772/45669 ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 19 ◽  
Author(s):  
Chien-Chou Lin ◽  
Kun-Cheng Chen ◽  
Wei-Ju Chuang

A hierarchical memetic algorithm (MA) is proposed for the path planning and formation control of swarm robots. The proposed algorithm consists of a global path planner (GPP) and a local motion planner (LMP). The GPP plans a trajectory within the Voronoi diagram (VD) of the free space. An MA with a non-random initial population plans a series of configurations along the path given by the former stage. The MA locally adjusts the robot positions to search for better fitness along the gradient direction of the distance between the swarm robots and the intermediate goals (IGs). Once the optimal configuration is obtained, the best chromosomes are reserved as the initial population for the next generation. Since the proposed MA has a non-random initial population and local searching, it is more efficient and the planned path is faster compared to a traditional genetic algorithm (GA). The simulation results show that the proposed algorithm works well in terms of path smoothness and computation efficiency.


2019 ◽  
Vol 9 (6) ◽  
pp. 1165
Author(s):  
Hong’an Yang ◽  
Xuefeng Bao ◽  
Shaohua Zhang ◽  
Xu Wang

Aimed at the problem that experimental verifications are difficult to execute due to lacking effective experimental platforms in the research field of multi-robot formation, we design a simple multi-robot formation platform. This proposed general and low-cost multi-robot formation platform includes the indoor global-positioning system, the multi-robot communication system, and the wheeled mobile robot hardware. For each wheeled mobile robot in our platform, its real-time position information in the centimeter‑level precise is obtained by the Marvelmind Indoor Navigation System and orientation information is obtained by the six-degree-of-freedom gyroscope. The Transmission Control Protocol/Internet Protocol (TCP/IP) wireless communication infrastructure is selected to support the communication among robots and the data collection in the process of experiments. Finally, a set of leader–follower formation experiments are performed by our platform, which include three trajectory tracking experiments of different types and numbers under deterministic environment and a formation-maintaining experiment with external disturbances. The results illustrate that our multi-robot formation platform can be effectively used as a general testbed to evaluate and verify the feasibility and correctness of the theoretical methods in the multi-robot formation. What is more, the proposed simple and general formation platform is beneficial to the development of platforms in the fields of multi-robot coordination, formation control, and search and rescue missions.


Sign in / Sign up

Export Citation Format

Share Document