scholarly journals Optimization of Two-Step Acid-Catalyzed Hydrolysis of Oil Palm Empty Fruit Bunch for High Sugar Concentration in Hydrolysate

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dongxu Zhang ◽  
Yee Ling Ong ◽  
Zhi Li ◽  
Jin Chuan Wu

Getting high sugar concentrations in lignocellulosic biomass hydrolysate with reasonable yields of sugars is commercially attractive but very challenging. Two-step acid-catalyzed hydrolysis of oil palm empty fruit bunch (EFB) was conducted to get high sugar concentrations in the hydrolysate. The biphasic kinetic model was used to guide the optimization of the first step dilute acid-catalyzed hydrolysis of EFB. A total sugar concentration of 83.0 g/L with a xylose concentration of 69.5 g/L and a xylose yield of 84.0% was experimentally achieved, which is in well agreement with the model predictions under optimal conditions (3% H2SO4and 1.2% H3PO4, w/v, liquid to solid ratio 3 mL/g, 130°C, and 36 min). To further increase total sugar and xylose concentrations in hydrolysate, a second step hydrolysis was performed by adding fresh EFB to the hydrolysate at 130°C for 30 min, giving a total sugar concentration of 114.4 g/L with a xylose concentration of 93.5 g/L and a xylose yield of 56.5%. To the best of our knowledge, the total sugar and xylose concentrations are the highest among those ever reported for acid-catalyzed hydrolysis of lignocellulose.

2007 ◽  
Vol 98 (3) ◽  
pp. 554-559 ◽  
Author(s):  
S.H.A. Rahman ◽  
J.P. Choudhury ◽  
A.L. Ahmad ◽  
A.H. Kamaruddin

2011 ◽  
Vol 59 (6) ◽  
pp. 593 ◽  
Author(s):  
Sophie Petit ◽  
Nadia Rubbo ◽  
Russell Schumann

Previous research indicated that microcapillary tubes greatly underestimated sugar present in flowers with low nectar volumes, but it was unclear whether tubes missed liquid nectar or whether sugar concentration in nectar they collected did not represent total sugar concentration in a flower. We determined the suitability of microcapillary tubes to estimate the energetic value of Acrotriche patula R.Br. (Ericaceae) nectar from total sugar mass. We collected a standing crop of nectar from individual flowers with microcapillary tubes and subsequently washed the flowers to recover putatively any residual sucrose, glucose, and fructose. We assessed microcapillary nectar volume as a predictor for total sugar mass in a flower by regression analysis, identified the percentage of sugar missed by microcapillary tubes, and compared sugar ratios between microcapillary samples and total nectar. Nectar volume collected with microcapillary tubes cannot be used to predict total nectar sugar contents in a flower. Microcapillary tubes missed 71% of the floral sugar on average, but not a large volume, indicating that sugar is not evenly distributed in a flower’s nectar. Proportions of different sugars did not differ significantly between microcapillary samples and total samples. Animals with different tongue morphologies and feeding behaviours may obtain different energetic rewards from the same flower with low nectar volume. Variation in a flower’s nectar at one point in time is likely to favour the generalisation of pollination systems.


BioResources ◽  
2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Ying H'ng ◽  
Akiko Nakagawa-Izumi ◽  
Cheu Peng Leh ◽  
Atanu Kumar Das ◽  
Hiroshi Ohi

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 591a-591 ◽  
Author(s):  
Don R. LaBonte ◽  
David H. Picha

Six sweetpotato cultivars were evaluated for changes in individual sugar concentration, dry weight, and alcohol insoluble solids (AIS) during growth and development. Measurements were taken at weekly intervals from 7 to 21 weeks after transplanting. Sucrose, the major sugar during all stages of development, generally increased in concentration throughout development for `Heart-o-gold', `Travis', and `Jewel', but peaked at 17 weeks for `Beauregard' and `Whitestar'. The high-dry matter white flesh cultivars of `Rojo Blanco' and `Whitestar' contained the lowest sucrose concentration. The monosaccharides glucose and fructose generally decreased in concentration up to 17 weeks in 4 of 6 cultivars, followed by an increase from 17 to 21 weeks in all cultivars. Glucose concentration was marginally greater than fructose at all stages of development in each cultivar. Little or no increase in total sugar concentration occurred during development in `Whitestar' and `Rojo Blanco'. A substantial increase in total sugars occurred during development with `Jewel', `Beauregard', `Heart-o-gold' and `Travis'. Cultivars differed widely in their individual sugar concentrations during development. Percent dry matter increased in all cultivars from 7 to 14 weeks. Dry matter and AIS decreased during the later stages of development.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 674 ◽  
Author(s):  
Kinanthi Mondylaksita ◽  
Jorge A. Ferreira ◽  
Ria Millati ◽  
Wiratni Budhijanto ◽  
Claes Niklasson ◽  
...  

The lignocellulosic residue from the palm oil industry, oil palm empty fruit bunch (OPEFB), represents a challenge to both producing industries and environment due to its disposal difficulties. Alternatively, OPEFB can be used for the production of valuable products if pretreatment methods, which overcome OPEFB recalcitrance and allow tailored valorization of all its carbohydrates and lignin, are developed. Specifically, high-value applications for lignin, to increase its contribution to the feasibility of lignocellulosic biorefineries, demand high-purity fractions. In this study, acid-catalyzed organosolv using ethanol as a solvent was used for the recovery of high-purity lignin and digestible cellulose. Factors including catalyst type and its concentration, temperature, retention time, and solid-to-liquid (S/L) ratio were found to influence lignin purity and recovery. At the best conditions (0.07% H2SO4, 210 °C, 90 min, and S/L ratio of 1:10), a lignin purity and recovery of 70.6 ± 4.9% and 64.94 ± 1.09%, respectively, were obtained in addition to the glucan-rich fraction. The glucan-rich fraction showed 94.06 ± 4.71% digestibility within 18 h at an enzyme loading of 30 filter paper units (FPU) /g glucan. Therefore, ethanol organosolv can be used for fractionating OPEFB into three high-quality fractions (glucan, lignin, and hemicellulosic compounds) for further tailored biorefining using low acid concentrations. Especially, the use of ethanol opens the possibility for integration of 1st and 2nd generation ethanol benefiting from the separation of high-purity lignin.


2021 ◽  
Author(s):  
Santat Sinjaroonsak ◽  
Aran H-Kittikun ◽  
Thanongsak Chaiyaso ◽  
Wasana Suyotha

Abstract Oil palm empty fruit bunch (EFB) is a major cellulosic waste from a palm oil mill. The use of EFB for bioconversion to fuel and valuable products is possible because this biomass is a cheap, renewable and abundantly available. This study was aimed to produce sugars from the alkaline peroxide pretreated EFB (APEFB) by hydrolysis with a commercial enzyme (iKnowzyme acid 2XL cellulase) in comparison with hydrochloric acid. Response surface methodology (RSM) was applied to improve the hydrolysis process. For an enzymatic hydrolysis, the optimum enzyme dose of 40 U/g APEFB and the liquid to solid ratio of 10 ml/g APEFB were investigated at 150 rpm and 50°C for 120 h. After saccharification, glucose and xylose obtained were 65.71 g/l (0.66 g/g APEFB) and 2.14 g/l (0.02 g/g APEFB), respectively. Many acids (acetic, formic, hydrochloric (HCl), nitric, orthophosphoric and sulfuric acids) were used to hydrolyze APEFB. The result showed that HCl was the best acid to produce glucose and xylose from APEFB with low furfural and hydroxymethylfurfural productions. The optimum HCl concentration and temperature for APEFB saccharification were 5.85% (w/v) acid at 114°C for 90 min. The glucose, xylose, furfural, and hydroxymethylfurfural obtained under these conditions were 10.70 g/l (0.11 g/g APEFB), 15.30 g/l (0.15 g/g APEFB), 2.34 g/l (0.02 g/g APEFB) and 0.67 g/l (0.007 g/g APEFB), respectively.


Sign in / Sign up

Export Citation Format

Share Document