scholarly journals Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

2014 ◽  
Vol 2014 ◽  
pp. 1-27 ◽  
Author(s):  
Christian Bach ◽  
William Sherman ◽  
Jani Pallis ◽  
Prabir Patra ◽  
Hassan Bajwa

Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable tools to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.

Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 575-588 ◽  
Author(s):  
Tetsunari Fukushige ◽  
Barbara Goszczynski ◽  
Helen Tian ◽  
James D McGhee

Abstract We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located ∼5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25–55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.


2021 ◽  
Vol 118 (35) ◽  
pp. e2103895118
Author(s):  
Hongmiao Hu ◽  
Shu Tian ◽  
Guohui Xie ◽  
Rui Liu ◽  
Nana Wang ◽  
...  

Arabidopsis TEMPRANILLO 1 (TEM1) is a transcriptional repressor that participates in multiple flowering pathways and negatively regulates the juvenile-to-adult transition and the flowering transition. To understand the molecular basis for the site-specific regulation of FLOWERING LOCUS T (FT) by TEM1, we determined the structures of the two plant-specific DNA-binding domains in TEM1, AP2 and B3, in complex with their target DNA sequences from the FT gene 5′-untranslated region (5′-UTR), revealing the molecular basis for TEM1 specificity for its DNA targets. In vitro binding assays revealed that the combination of the AP2 and B3 binding sites greatly enhanced the overall binding of TEM1 to the FT 5′-UTR, indicating TEM1 combinatorically recognizes the FT gene 5′-UTR. We further showed that TEM1 recruits the Polycomb repressive complex 2 (PRC2) to the FT 5′-UTR. The simultaneous binding of the TEM1 AP2 and B3 domains to FT is necessary for deposition of H3K27me3 at the FT 5′-UTR and for the flowering repressor function of TEM1. Overall, our data suggest that the combinatorial recognition of FT 5′-UTR by TEM1 ensures H3K27me3 deposition to precisely regulate the floral transition.


1987 ◽  
Vol 7 (12) ◽  
pp. 4582-4584 ◽  
Author(s):  
L Dailey ◽  
S B Roberts ◽  
N Heintz

Specific DNA-binding and in vitro transcription activities of H4TF-1 and H4TF-2 are inactivated by chelating agents. Binding activity is restored by addition of Zn2+, and H4TF-2 is also reactivated by Fe2+. In contrast, preformed factor-DNA complexes are resistant to chelators. Therefore, metal ions are a required component of the H4TF-1 and H4TF-2 DNA-binding domains.


2015 ◽  
Vol 116 (11) ◽  
pp. 2435-2444 ◽  
Author(s):  
Mir A. Hossain ◽  
Joeva J. Barrow ◽  
Yong Shen ◽  
MD Imdadul Haq ◽  
Jörg Bungert

2004 ◽  
Vol 24 (8) ◽  
pp. 3387-3395 ◽  
Author(s):  
Helle F. Jørgensen ◽  
Ittai Ben-Porath ◽  
Adrian P. Bird

ABSTRACT MBD1 is a vertebrate methyl-CpG binding domain protein (MBD) that can bring about repression of methylated promoter DNA sequences. Like other MBD proteins, MBD1 localizes to nuclear foci that in mice are rich in methyl-CpG. In methyl-CpG-deficient mouse cells, however, Mbd1 remains localized to heterochromatic foci whereas other MBD proteins become dispersed in the nucleus. We find that Mbd1a, a major mouse isoform, contains a CXXC domain (CXXC-3) that binds specifically to nonmethylated CpG, suggesting an explanation for methylation-independent localization. Transfection studies demonstrate that the CXXC-3 domain indeed targets nonmethylated CpG sites in vivo. Repression of nonmethylated reporter genes depends on the CXXC-3 domain, whereas repression of methylated reporters requires the MBD. Our findings indicate that MBD1 can interpret the CpG dinucleotide as a repressive signal in vivo regardless of its methylation status.


2001 ◽  
Vol 183 (9) ◽  
pp. 2947-2951 ◽  
Author(s):  
Douglas Hinerfeld ◽  
Gordon Churchward

ABSTRACT Purified integrase protein (Int) of the conjugative transposon Tn916 was shown, using nuclease protection experiments, to bind specifically to a site within the origin of conjugal transfer of the transposon, oriT. A sequence similar to the ends of the transposon that are bound by the C-terminal DNA-binding domain of Int was present in the protected region. However, Int binding tooriT required both the N- and C-terminal DNA-binding domains of Int, and the pattern of nuclease protection differed from that observed when Int binds to the transposon ends and flanking DNA. Binding of Int to oriT may be part of a mechanism to prevent premature conjugal transfer of Tn916 prior to excision from the donor DNA.


Author(s):  
Mazen Hamed ◽  
Reema Siam ◽  
Roza Zaid

Zinc finger proteins (ZFP) play important roles in cellular processes. The DNA binding region of ZFP consists of 3 zinc finger DNA binding domains connected by amino acid linkers, the sequence TGQKP connects ZF1 and ZF2, and TGEKP connects ZF2 with ZF3. Linkers act to tune the zinc finger protein in the right position to bind its DNA target, the type of amino acid residues and length of linkers reflect on ZF1-ZF2-ZF3 interactions and contribute to the search and recognition process of ZF protein to its DNA target. Linker mutations and the affinity of the resulting mutants to specific and nonspecific DNA targets were studied by MD simulations and MM_GB(PB)SA. The affinity of mutants to DNA varied with type and position of amino acid residue. Mutation of K in TGQKP resulted in loss in affinity due to the loss of positive K interaction with phosphates, mutation of G showed loss in affinity to DNA, WT protein and all linker mutants showed loss in affinity to a nonspecific DNA target, this finding confirms previous reports which interpreted this loss in affinity as due to ZF1 having an anchoring role, and ZF3 playing an explorer role in the binding mechanism. The change in ZFP-DNA affinity with linker mutations is discussed in view of protein structure and role of linker residues in binding.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2639-2650 ◽  
Author(s):  
S. Jun ◽  
C. Desplan

The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs, the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.


Nature ◽  
1991 ◽  
Vol 349 (6305) ◽  
pp. 175-178 ◽  
Author(s):  
Jeannette Nardelli ◽  
Toby J. Gibson ◽  
Christine Vesque ◽  
Patrick Charnay

Sign in / Sign up

Export Citation Format

Share Document