Low-Cost Hardware Implementation of Human Blood Identification Device Using Feed-Forward Artificial Neural Network on FPGA

2018 ◽  
Author(s):  
Rizki Eka Putri ◽  
Denny Darlis

This article was under review for ICELTICS 2018 -- In the medical world there is still service dissatisfaction caused by lack of blood type testing facility. If the number of tested blood arise, a lot of problems will occur so that electronic devices are needed to determine the blood type accurately and in short time. In this research we implemented an Artificial Neural Network on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board to identify the blood type. This research uses blood sample image as system input. VHSIC Hardware Discription Language is the language to describe the algorithm. The algorithm used is feed-forward propagation of backpropagation neural network. There are 3 layers used in design, they are input, hidden1, and output. At hidden1layer has two neurons. In this study the accuracy of detection obtained are 92%, 92%, 92%, 90% and 86% for 32x32, 48x48, 64x64, 80x80, and 96x96 pixel blood image resolution, respectively.

Author(s):  
Rizki Ardianto Priramadhi ◽  
Denny Darlis

In this research, a Feed-Forward Artificial Neural Network design was implemented on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board and prototyped blood type classification device. This research uses blood sample images as a system input. The system was built using VHSIC Hardware Description Language to describe the feed-forward propagation with a backpropagation neural network algorithm. We use three layers for the feed-forward ANN design with two hidden layers. The hidden layer designed has two neurons. In this study, the accuracy of detection obtained for four-type blood image resolutions results from 86%-92%, respectively.


Aviation ◽  
2015 ◽  
Vol 19 (2) ◽  
pp. 90-103 ◽  
Author(s):  
Panarat Srisaeng ◽  
Glenn S. Baxter ◽  
Graham Wild

This study focuses on predicting Australia‘s low cost carrier passenger demand and revenue passenger kilometres performed (RPKs) using traditional econometric and artificial neural network (ANN) modelling methods. For model development, Australia‘s real GDP, real GDP per capita, air fares, Australia‘s population and unemployment, tourism (bed spaces) and 4 dummy variables, utilizing quarterly data obtained between 2002 and 2012, were selected as model parameters. The neural network used multi-layer perceptron (MLP) architecture that compromised a multi-layer feed-forward network and the sigmoid and linear functions were used as activation functions with the feed forward‐back propagation algorithm. The ANN was applied during training, testing and validation and had 11 inputs, 9 neurons in the hidden layers and 1 neuron in the output layer. When comparing the predictive accuracy of the two techniques, the ANNs provided the best prediction and showed that the performance of the ANN model was better than that of the traditional multiple linear regression (MLR) approach. The highest R-value for the enplaned passengers ANN was around 0.996 and for the RPKs ANN was round 0.998, respectively.


2019 ◽  
Vol 29 (9) ◽  
pp. 091101 ◽  
Author(s):  
Nikita Frolov ◽  
Vladimir Maksimenko ◽  
Annika Lüttjohann ◽  
Alexey Koronovskii ◽  
Alexander Hramov

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yasir Hassan Ali ◽  
Roslan Abd Rahman ◽  
Raja Ishak Raja Hamzah

The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN) computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ). The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.


Author(s):  
Massine GANA ◽  
Hakim ACHOUR ◽  
Kamel BELAID ◽  
Zakia CHELLI ◽  
Mourad LAGHROUCHE ◽  
...  

Abstract This paper presents a design of a low-cost integrated system for the preventive detection of unbalance faults in an induction motor. In this regard, two non-invasive measurements have been collected then monitored in real time and transmitted via an ESP32 board. A new bio-flexible piezoelectric sensor developed previously in our laboratory, was used for vibration analysis. Moreover an infrared thermopile was used for non-contact temperature measurement. The data is transmitted via Wi-Fi to a monitoring station that intervenes to detect an anomaly. The diagnosis of the motor condition is realized using an artificial neural network algorithm implemented on the microcontroller. Besides, a Kalman filter is employed to predict the vibrations while eliminating the noise. The combination of vibration analysis, thermal signature analysis and artificial neural network provides a better diagnosis. It ensures efficiency, accuracy, easy access to data and remote control, which significantly reduces human intervention.


Sign in / Sign up

Export Citation Format

Share Document