Feed-forward artificial neural network provides data-driven inference of functional connectivity

2019 ◽  
Vol 29 (9) ◽  
pp. 091101 ◽  
Author(s):  
Nikita Frolov ◽  
Vladimir Maksimenko ◽  
Annika Lüttjohann ◽  
Alexey Koronovskii ◽  
Alexander Hramov
2018 ◽  
Author(s):  
Rizki Eka Putri ◽  
Denny Darlis

This article was under review for ICELTICS 2018 -- In the medical world there is still service dissatisfaction caused by lack of blood type testing facility. If the number of tested blood arise, a lot of problems will occur so that electronic devices are needed to determine the blood type accurately and in short time. In this research we implemented an Artificial Neural Network on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board to identify the blood type. This research uses blood sample image as system input. VHSIC Hardware Discription Language is the language to describe the algorithm. The algorithm used is feed-forward propagation of backpropagation neural network. There are 3 layers used in design, they are input, hidden1, and output. At hidden1layer has two neurons. In this study the accuracy of detection obtained are 92%, 92%, 92%, 90% and 86% for 32x32, 48x48, 64x64, 80x80, and 96x96 pixel blood image resolution, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yasir Hassan Ali ◽  
Roslan Abd Rahman ◽  
Raja Ishak Raja Hamzah

The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN) computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ). The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.


2020 ◽  
Vol 38 (6) ◽  
pp. 2413-2435 ◽  
Author(s):  
Xinwei Xiong ◽  
Kyung Jae Lee

Secondary recovery methods such as waterflooding are often applied to depleted reservoirs for enhancing oil and gas production. Given that a large number of discretized elements are required in the numerical simulations of heterogeneous reservoirs, it is not feasible to run multiple full-physics simulations. In this regard, we propose a data-driven modeling approach to efficiently predict the hydrocarbon production and greatly reduce the computational and observation cost in such problems. We predict the fluid productions as a function of heterogeneity and injection well placement by applying artificial neural network with small number of training dataset, which are obtained with full-physics simulation models. To improve the accuracy of predictions, we utilize well data at producer and injector to achieve economic and efficient prediction without requiring any geological information on reservoir. The suggested artificial neural network modeling approach only utilizing well data enables the efficient decision making with reduced computational and observation cost.


Sign in / Sign up

Export Citation Format

Share Document