scholarly journals Adaptive Synchronization Control of Multiple Vessels with Switching Communication Topologies and Time Delay

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Fuguang Ding ◽  
Yanqin Ma ◽  
Yuanwei Zhou ◽  
Jiangjun Li

Recently, synchronization movement control of multiple vessels has been studied broadly. In most of the studies, the communication network among vessels is considered to be fixed and the time delay is often ignored. However, the communication network among vessels maybe vary because of switching of different tasks, and the time delay is necessary to be considered when the communication network is unreliable. In this paper, the synchronization movement of multiple vessels with switching connected communication topologies is studied, and an adaptive synchronization control algorithm that is based on backstepping sliding mode control is proposed. The control algorithm is achieved by defining cross coupling error which is combination of the trajectory tracking error and velocity tracking error. And an adaptive control term is used to estimate the external disturbances, so that the unknown external disturbances can be compensated. Furthermore, the robustness of the control law to time-varying time delay is also discussed. At last, some simulations are carried out to validate the effectiveness of the proposed synchronization control algorithm.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mingyu Fu ◽  
Jianfang Jiao ◽  
Shen Yin

We investigate the problem of coordinated formation control for multiple surface vessels in the presence of unknown external disturbances. In order to realize the leaderless coordinated formation and achieve the robustness against unknown external disturbances, a new robust coordinated formation control algorithm based on backstepping sliding mode control is proposed. The proposed coordinated control algorithm is achieved by defining a new switched function using the combination of position tracking error and cross-coupling error. Particularly, the cross-coupling error is defined using velocity tracking error and velocity synchronization error so as to be applicable for sliding mode controller design. Furthermore, the adaptive control law is proposed to estimate unknown disturbances for each vessel. The globally asymptotically stability is proved using the Lyapunov direct method. Finally, the effectiveness of the proposed coordinated formation control algorithm is demonstrated by corresponding simulations.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Romina Zarrabi Ekbatani ◽  
Ke Shao ◽  
Jasim Khawwaf ◽  
Hai Wang ◽  
Jinchuan Zheng ◽  
...  

The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Meng ◽  
Xiaohong Wang

Adaptive synchronization for a class of uncertain delayed fractional-order Hopfield neural networks (FOHNNs) with external disturbances is addressed in this paper. For the unknown parameters and external disturbances of the delayed FOHNNs, some adaptive estimations are designed. Firstly, a fractional-order switched sliding surface is proposed for the delayed FOHNNs. Then, according to the fractional-order extension of the Lyapunov stability criterion, a fractional-order sliding mode controller is constructed to guarantee that the synchronization error of the two uncertain delayed FOHNNs converges to an arbitrary small region of the origin. Finally, a numerical example of two-dimensional uncertain delayed FOHNNs is given to verify the effectiveness of the proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Qidan Zhu ◽  
Junda Ma ◽  
Zhilin Liu ◽  
Ke Liu

An implementable robust containment control algorithm is proposed for a group of underactuated ships in the presence of hydrodynamic parameter uncertainties and external disturbances. The control objective is to drive all the followers into the convex hull spanned by the virtual leaders, whose state information is available only to a subset of the followers. For this purpose, the ship model is primarily transformed to a strict-feedback form. In the kinematic design, a virtual containment controller, requiring the state information from its neighbors, is presented based on the results obtained from graph theory. In the dynamic design, a robust containment controller is developed through utilizing upper-to-up sliding mode control. In addition, in order to simplify the implementations of the control law, the command filtered backstepping (CFBP) method is introduced to prevent the analytic differentiations of the virtual law from each design step of the backstepping (BP) method. Subsequently, it is well proven that all the tracking errors could converge to and remain small neighborhoods of the equilibrium point. Finally, several simulation experiments are conducted to demonstrate the performance of the proposed control algorithm.


2017 ◽  
Vol 24 (19) ◽  
pp. 4541-4550 ◽  
Author(s):  
T. Binazadeh ◽  
M. Yousefi

This paper studies the robust stabilization for a class of nonlinear time-delay fractional order (FO) systems in the presence of some practical aspects. The considered aspects in the FO system include: nonlinear Lipschitz functions; time-varying norm-bounded uncertain terms; and time-delays in the state variables. A major challenge in the control of time-delay systems is that the value of delay is usually not perfectly known or it may be even time-varying. In this paper, a novel asymptotic stabilizing control law is proposed which is delay independent and also has a robust manner in the presence of uncertain terms in the model which may be due to model uncertainties (parameter uncertainties or model simplification) and/or external disturbances. The proposed controller is a FO sliding mode controller that is designed such that the closed-loop system is asymptotically delay-independent stable. For this purpose, a FO sliding manifold is introduced and the occurrence of the reaching phase in a finite time is proved. Finally, in order to validate the theoretical results, an example is given and simulation results confirm the appropriate performance of the proposed controller.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
L. Medjbeur ◽  
M. N. Harmas ◽  
S. Benaggoune ◽  
K. Zehar

Robust control often requires some adaptive approach in evaluating systems dynamics to handle parameters variations and external disturbances. Therefore, an error due to dynamics approximation is inevitably added to uncertainties already present in the model. This issue is addressed in this paper, through the combination of two robust techniques, Hinf and synergetic control. These latter are used to ensure reducing tracking error in the overall closed-loop system while guaranteeing stability via Lyapunov synthesis. With the aim of handling parameters variations, an indirect adaptive fuzzy scheme is used to elaborate system model. Simulation studies are conducted to assess the proposed approach on two practical systems, and the results are compared to a sliding mode proportional integral (PI)-based technique. It is to be noted that a large class of systems depicted as control affine systems will be considered in this paper. An induction motor and an inverted pendulum representing, respectively, a linear and a nonlinear system are utilized in this study showing improvement due to the suggested approach, in overall performance over its sliding mode control counterpart.


2017 ◽  
Vol 13 (1) ◽  
pp. 114-122
Author(s):  
Abdul-Basset AL-Hussein

A composite PD and sliding mode neural network (NN)-based adaptive controller, for robotic manipulator trajectory tracking, is presented in this paper. The designed neural networks are exploited to approximate the robotics dynamics nonlinearities, and compensate its effect and this will enhance the performance of the filtered error based PD and sliding mode controller. Lyapunov theorem has been used to prove the stability of the system and the tracking error boundedness. The augmented Lyapunov function is used to derive the NN weights learning law. To reduce the effect of breaching the NN learning law excitation condition due to external disturbances and measurement noise; a modified learning law is suggested based on e-modification algorithm. The controller effectiveness is demonstrated through computer simulation of cylindrical robot manipulator.


2018 ◽  
Vol 69 (5) ◽  
pp. 329-336 ◽  
Author(s):  
Chems Eddine Boudjedir ◽  
Djamel Boukhetala ◽  
Mohamed Bouri

Abstract In this paper, a hybrid nonlinear proportional-derivative-sliding mode controller (NPD-SMC) is developed for the trajectory tracking of robot manipulators. The proposed controller combines the advantage of the easy implementation of NPD control and the robustness of SMC. The gains of PD control are tuned on-line in order to increase the convergence rate, whereas the SMC term is introduced to reject the external disturbances without requiring to know the system dynamics. The stability of the NPD-SMC is proved using Lyaponuv theorem, and it is demonstrated that the tracking error and the tracking error rate converge asymptotically to zero. Experiments are carried out on the parallel Delta robot to illustrate the effectiveness and robustness of the proposed approach. It is also shown the superiority of the NPD-SMC control over the NPD control and PD-SMC control.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xuehua Yan ◽  
Xinmin Song

This paper is the further investigation of work of Yan and Liu, 2011, and considers the global practical tracking problem by output feedback for a class of uncertain nonlinear systems with not only unmeasured states dependent growth but also time-varying time delay. Compared with the closely related works, the remarkableness of the paper is that the time-varying time delay and unmeasurable states are permitted in the system nonlinear growth. Motivated by the related tracking results and flexibly using the ideas and techniques of universal control and dead zone, an adaptive output-feedback tracking controller is explicitly designed with the help of a new Lyapunov-Krasovskii functional, to make the tracking error prescribed arbitrarily small after a finite time while keeping all the closed-loop signals bounded. A numerical example demonstrates the effectiveness of the results.


Sign in / Sign up

Export Citation Format

Share Document