scholarly journals A New Era of Submillimeter GRB Afterglow Follow-Ups with the Greenland Telescope

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yuji Urata ◽  
Kuiyun Huang ◽  
Keiichi Asada ◽  
Hiroyuki Hirashita ◽  
Makoto Inoue ◽  
...  

Planned rapid submillimeter (submm) gamma-ray-bursts (GRBs) follow-up observations conducted using the Greenland Telescope (GLT) are presented. The GLT is a 12-m submm telescope to be located at the top of the Greenland ice sheet, where the high altitude and dry weather porvide excellent conditions for observations at submm wavelengths. With its combination of wavelength window and rapid responding system, the GLT will explore new insights on GRBs. Summarizing the current achievements of submm GRB follow-ups, we identify the following three scientific goals regarding GRBs: (1) systematic detection of bright submm emissions originating from reverse shock (RS) in the early afterglow phase, (2) characterization of forward shock and RS emissions by capturing their peak flux and frequencies and performing continuous monitoring, and (3) detections of GRBs at a high redshift as a result of the explosion of first generation stars through systematic rapid follow-ups. The light curves and spectra calculated by available theoretical models clearly show that the GLT could play a crucial role in these studies.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
J. J. Geng ◽  
Y. F. Huang

The detection of optical rebrightenings and X-ray plateaus in the afterglows of gamma-ray bursts (GRBs) challenges the generic external shock model. Recently, we have developed a numerical method to calculate the dynamics of the system consisting of a forward shock and a reverse shock. Here, we briefly review the applications of this method in the afterglow theory. By relating these diverse features to the central engines of GRBs, we find that the steep optical rebrightenings would be caused by the fall-back accretion of black holes, while the shallow optical rebrightenings are the consequence of the injection of the electron-positron-pair wind from the central magnetar. These studies provide useful ways to probe the characteristics of GRB central engines.


2018 ◽  
Vol 618 ◽  
pp. A128 ◽  
Author(s):  
V. Casasola ◽  
L. Magrini ◽  
F. Combes ◽  
E. Sani ◽  
J. Fritz ◽  
...  

Aims. The aim of this paper is the spectroscopic study of 13 galaxies belonging to the field of the protocluster associated with the radio galaxy 7C 1756+6520 at z = 1.4156. In particular, we focus on the characterization of the nuclear activity. Methods. This analysis has been performed on rest-frame optical spectra taken with the Large Binocular Telescope, using the spectrograph LUCI, which is operative in the near-infrared domain. The adopted spectral coverage allowed us to observe emission lines such as Hα, Hβ, [O III]λ 5007 Å, and [N II]λ 6583 Å at the redshift of the central radio galaxy. We observed the central part of the protocluster, which is suitable to include the radio galaxy, several spectroscopically confirmed active galactic nuclei (AGN) belonging to the protocluster, and other objects that might be members of the protocluster. Results. For four previously identified protocluster members, we derived the redshift by detecting emission lines that have never detected before for these galaxies. We identified a new protocluster member and eight new possible protocluster members. The stacked spectrum of the galaxies in which we detected the [O III]λ 5007 Å emission line revealed the second line of the [O III] doublet at 4959 Å and the Hβ line, which confirms that they belong to the protocluster. By collecting all members identified so far in this work and other members from the literature, we defined 31 galaxies, including the central radio galaxy, around the redshift 1.4152 ± 0.056. This corresponds to peculiar velocities ≲5000 km s−1 with respect to the radio galaxy. The position versus velocity phase-space diagram suggests that three AGN of the protocluster and the central radio galaxy might be a virialized population that has been coexisting for a long time in the densest core region of this forming structure. This protocluster is characterized by a high fraction of AGN (~23%). For one of them, AGN1317, we produced two so-called Baldwin, Phillips & Terlevich (BPT) diagrams. The high fraction of AGN and their distribution within the protocluster seem to be consistent with predictions of some theoretical models on AGN growth and feedback. These models are based on galaxy interactions and ram pressure as triggers of AGN activity. Conclusions. The high fraction of AGN belonging to the protocluster suggests that they were likely triggered at the same time, maybe by the ongoing formation of the protocluster. Observations of AGN in this protocluster and in other distant clusters will help clarifying whether the resulting high fraction of AGN is unusual or typical for such structures at high redshift. Our next step will be analyses of previously acquired high-resolution radio data of the central radio galaxy to derive information on the nature of the radio galaxy and connect it with its cosmic evolution.


2010 ◽  
Vol 19 (06) ◽  
pp. 991-996
Author(s):  
YOSUKE MIZUNO ◽  
BING ZHANG ◽  
BRUNO GIACOMAZZO ◽  
KEN-ICHI NISHIKAWA ◽  
PHILIP E. HARDEE ◽  
...  

We study the problem of deceleration of an arbitrarily magnetized relativistic ejecta in a static unmagnetized medium and its connection to the physics of gamma-ray bursts (GRBs). By computing exact solutions of the Riemann problem describing this scenario, we find that with the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization parameter σ (the Poynting-to-kinetic flux ratio). The reverse shock becomes a rarefaction wave when σ exceeds a critical value defined by the balance between magnetic pressure in the ejecta and thermal pressure in the forward shock. In the rarefaction wave regime, the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value due to the strong magnetic pressure in the ejecta. We discuss the implications for models of GRBs.


2012 ◽  
Vol 746 (2) ◽  
pp. 170 ◽  
Author(s):  
A. N. Morgan ◽  
James Long ◽  
Joseph W. Richards ◽  
Tamara Broderick ◽  
Nathaniel R. Butler ◽  
...  

Science ◽  
2013 ◽  
Vol 343 (6166) ◽  
pp. 38-41 ◽  
Author(s):  
W. T. Vestrand ◽  
J. A. Wren ◽  
A. Panaitescu ◽  
P. R. Wozniak ◽  
H. Davis ◽  
...  

The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100–megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.


Author(s):  
G E Anderson ◽  
M E Bell ◽  
J Stevens ◽  
M D Aksulu ◽  
J C A Miller-Jones ◽  
...  

Abstract We introduce the Australia Telescope Compact Array (ATCA) rapid-response mode by presenting the first successful trigger on the short-duration gamma-ray burst (GRB) 181123B. Early-time radio observations of short GRBs may provide vital insights into the radio afterglow properties of Advanced LIGO- and Virgo-detected gravitational wave events, which will in turn inform follow-up strategies to search for counterparts within their large positional uncertainties. The ATCA was on target within 12.6 hr post-burst, when the source had risen above the horizon. While no radio afterglow was detected during the 8.3 hr observation, we obtained force-fitted flux densities of 7 ± 12 and 15 ± 11μJy at 5.5 and 9 GHz, respectively. Afterglow modelling of GRB 181123B showed that the addition of the ATCA force-fitted radio flux densities to the Swift X-ray Telescope detections provided more stringent constraints on the fraction of thermal energy in the electrons (log $\epsilon _e = -0.75^{+0.39}_{-0.40}$ rather than log $\epsilon _e = -1.13^{+0.82}_{-1.2}$ derived without the inclusion of the ATCA values), which is consistent with the range of typical εe derived from GRB afterglow modelling. This allowed us to predict that the forward shock may have peaked in the radio band ∼10 days post-burst, producing detectable radio emission ≳ 3 − 4 days post-burst. Overall, we demonstrate the potential for extremely rapid radio follow-up of transients and the importance of triggered radio observations for constraining GRB blast wave properties, regardless of whether there is a detection, via the inclusion of force-fitted radio flux densities in afterglow modelling efforts.


2019 ◽  
Vol 489 (2) ◽  
pp. 1820-1827 ◽  
Author(s):  
Gavin P Lamb ◽  
Shiho Kobayashi

ABSTRACT The afterglows to gamma-ray bursts (GRBs) are due to synchrotron emission from shocks generated as an ultrarelativistic outflow decelerates. A forward and a reverse shock will form, however, where emission from the forward shock is well studied as a potential counterpart to gravitational wave-detected neutron star mergers the reverse shock has been neglected. Here, we show how the reverse shock contributes to the afterglow from an off-axis and structured outflow. The off-axis reverse shock will appear as a brightening feature in the rising afterglow at radio frequencies. For bursts at ∼100 Mpc, the system should be inclined ≲20° for the reverse shock to be observable at ∼0.1–10 d post-merger. For structured outflows, enhancement of the reverse shock emission by a strong magnetic field within the outflow is required for the emission to dominate the afterglow at early times. Early radio photometry of the afterglow could reveal the presence of a strong magnetic field associated with the central engine.


2005 ◽  
Vol 192 ◽  
pp. 543-553
Author(s):  
Abraham Loeb

SummaryGamma-Ray Bursts (GRBs) are believed to originate in compact remnants (black holes or neutron stars) of massive stars. Their high luminosities make them detectable out to the edge of the visible universe. We describe the many advantages of GRB afterglows relative to quasars as probes of the intergalactic medium during the epoch of reionization. The Swift satellite, planned for launch by the end of 2004, will likely open a new era in observations of the high redshift universe.


Galaxies ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 6 ◽  
Author(s):  
Massimiliano De Pasquale ◽  
Mathew Page ◽  
David Kann ◽  
Samantha Oates ◽  
Steve Schulze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document