scholarly journals Mathematical Modeling and Analysis of Multirobot Cooperative Hunting Behaviors

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Song ◽  
Yibin Li ◽  
Caihong Li ◽  
Xin Ma

This paper presents a mathematical model of multirobot cooperative hunting behavior. Multiple robots try to search for and surround a prey. When a robot detects a prey it forms a following team. When another “searching” robot detects the same prey, the robots form a new following team. Until four robots have detected the same prey, the prey disappears from the simulation and the robots return to searching for other prey. If a following team fails to be joined by another robot within a certain time limit the team is disbanded and the robots return to searching state. The mathematical model is formulated by a set of rate equations. The evolution of robot collective hunting behaviors represents the transition between different states of robots. The complex collective hunting behavior emerges through local interaction. The paper presents numerical solutions to normalized versions of the model equations and provides both a steady state and a collaboration ratio analysis. The value of the delay time is shown through mathematical modeling to be a strong factor in the performance of the system as well as the relative numbers of the searching robots and the prey.

1991 ◽  
Vol 01 (01) ◽  
pp. 113-123 ◽  
Author(s):  
N. BELLOMO ◽  
E. LONGO

This paper deals with the mathematical modeling and analysis of a new model of the Boltzmann equation with a finite number of velocity moduli, but with a continuous dependence on the velocity directions. The mathematical model is derived in the first part of the paper. Then the analysis of the equilibrium Maxwellian state is dealt with in the second part of the paper with the purpose of showing that the space of collision invariants is the correct one.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Reza Alayi ◽  
Mahdi Mohkam ◽  
Hossein Monfared ◽  
Alibek Issakhov ◽  
Nima Khalilpoor

In this paper, the physical parameters of the absorber pipe of a linear parabolic collector have been investigated. The types of solar collectors, specifically the linear parabolic collector, have been comprehensively studied. Then, the mathematical model of heat transfer in the absorber pipe of the collector has been presented based on valid references. Numerical solutions of the equations related to the absorber pipe were performed by MATLAB software, and the effects of the physical parameters of the absorber pipe on its efficiency were investigated. The results show that increasing the length of the absorber pipe causes a nonlinear decrease in the efficiency of the absorber pipe. One of the important results is the increase in fluid temperature due to the increase in the diameter of the adsorbent tube, which increases the diameter of the fluid temperature by 60 K, in which the parameter increases the efficiency by 0.38%.


2018 ◽  
Vol 284 ◽  
pp. 986-992 ◽  
Author(s):  
T.N. Storodubtseva ◽  
A.A. Aksomitny ◽  
A.R. Sadrtdinov

The mathematical model of a wood polymeric sand composite has been developed, which allows studying the thermal insulation properties of a composite material, taking into account the ratio of wood filler to the other components, the method for obtaining samples, and the type of wood filler. The technique of modeling and analysis of the obtained results is given. By mathematical modeling it was established that the wood polymeric sand composite has thermal insulation properties 2-3 times better than that of construction materials based on concrete. Construction materials based on the developed composite have a higher heat capacity than pure wood, which allows them to better maintain the constancy of the temperature inside the premises with significant daily fluctuations in the external temperature. A series of practical tests were conducted to evaluate the reliability of the results obtained. The discrepancy between theoretical and practical results does not exceed 5%.


2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Shining Li ◽  
Wenbin Ji ◽  
Zhenlin Sun ◽  
Yufeng Zhao

Purpose This study aims to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A force control strategy of backstepping + proportion integration differentiation (PID) is proposed. The grinding end effector is installed on the flange of the robot. The robot controls the position and posture of the grinding end actuator and the grinding end actuator controls the grinding force output. First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. Finally, the feasibility of the proposed method is verified by simulation and experiment. Findings The simulation and experimental results show that the backstepping + PID strategy can track the expected force quickly, and improve the dynamic response performance of the system and the quality of grinding and polishing of automobile wheel hub. Research limitations/implications The mathematical model is based on the pneumatic system and ideal gas, and ignores the influence of friction in the working process of the cylinder, so the mathematical model proposed in this study has certain limitations. A new control strategy is proposed, which is not only used to control the grinding force of automobile wheels, but also promotes the development of industrial control. Social implications The automatic constant force grinding of automobile wheel hub is realized, and the manpower is liberated. Originality/value First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. The nonlinear model of the system is controlled by backstepping method, and in the process, the linear system composed of errors is obtained, and then the linear system is controlled by PID to realize the combination of backstepping and PID control.


Author(s):  
Sudhakar Yadav ◽  
Vivek Kumar

This study develops a mathematical model for describing the dynamics of the banana-nematodes and its pest detection method to help banana farmers. Two criteria: the mathematical model and the type of nematodes pest control system are discussed. The sensitivity analysis, local stability, global stability, and the dynamic behavior of the mathematical model are performed. Further, we also develop and discuss the optimal control mathematical model. This mathematical model represents various modes of management, including the initial release of infected predators as well as the destroying of nematodes. The theoretical results are shown and verified by numerical simulations.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


Author(s):  
Petro Martyniuk ◽  
Oksana Ostapchuk ◽  
Vitalii Nalyvaiko

The problem of pollution transfer by water flow in open channel was considered. The mathematical model of the problem was constructed. The numerical solution of the onedimensional boundary problem was obtained. The computational algorithm for solving the problem was programmed to implement. A series of numerical experiments with their further analysis was conducted.


Author(s):  
Edmunds Teirumnieks ◽  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Harijs Kalis

Metals deposition in peat can aid to evaluate impact of atmospheric or wastewaters pollution and thus can be a good indicator of recent and historical changes in the pollution loading. For peat using in agriculture, industrial, heat production etc. knowledge of peat metals content is important. Experimental determination of metals in peat is very long and expensive work. Using experimental data the mathematical model for calculation of concentrations of metals in different points for different layers is developed. The values of the metals (Ca, Mg, Fe, Sr, Cu, Zn, Mn, Pb, Cr, Ni, Se, Co, Cd, V, Mo) concentrations in different layers in peat taken from Knavu peat bog from four sites are determined using inductively coupled plasma optical emission spectrometer. Mathematical model for calculation of concentrations of metal has been described in the paper. As an example, mathematical models for calculation of Pb concentrations have been analyzed.


Sign in / Sign up

Export Citation Format

Share Document