scholarly journals Population Behavior in the Mathematical Model of the Spread of COVID19 Type SEIRS

2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .

2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


2020 ◽  
pp. 44-49
Author(s):  
V. V. Kharlamov ◽  
◽  
D. I. Popov ◽  
P. S. Sokolov ◽  
L. E. Serkova ◽  
...  

The article presents the results of comparison of experimental studies and mathematical modeling of the stand for testing induction motors by the method of mutual load. A detailed description of the composition of the experimental equipment, which is based on a pair of frequency converters and connected to them a pair of engines of the АИС71В4 type with a nominal power of 0,75 kW, the shafts of which are rigidly connected by a coupling. The mathematical model of the electromechanical system used in the calculations is presented, and its main assumptions are listed. A table of parameter values and graphs obtained from calculated and experimental data are presented. The analysis of the obtained data shows the possibility of using the considered mathematical model with the existing assumptions in the design of electrical complexes intended for testing induction motors by the method of mutual load


2018 ◽  
Vol 06 (03) ◽  
pp. 185-195
Author(s):  
Xuefang Li

Cancer is a leading cause of mortality worldwide and the major exhausting factor for social resources in healthcare, medical treatment, and the loss of working force. Therefore, developing cancer therapy methods and appropriate prognosis or assessment for cancer therapies are of critical importance. Due to the high cost in exploration and assessment of cancer therapy methods, mathematical modeling of the immune system is viewed as a potentially powerful tool in the development of improved treatment regimens and prediction of disease progression. In the present work, several general principles in mathematical modeling of immune–tumor interactions and cancer therapies are summarized first. Secondly, the acquisition of the parameter values and model calibration are discussed according to mathematical techniques in qualitative analysis. Moreover, various therapy strategies are tested on the constructed mathematical model, from which constructive suggestions for developing new clinical treatment methods are provided. Additionally, some general guidance for new therapies are also discussed by analyzing the sensitivity of the system parameters. In the end, we also discuss essential difficulties in building the mathematical model for cancer patients.


Author(s):  
Alibek Issakhov ◽  
Ruslan Bulgakov ◽  
Yeldos Zhandaulet

AbstractIn this paper, the propagation of particles with different sizes from a coal-based thermal power plant was investigated. It was found that the deterioration of the environment is due to the release of a large amount of SOx, NOx and the volatile particles of Suspended Particulate Matter and Respirable Suspended Particles matter, which cause human and animal diseases. This paper presents the numerical simulation results of air pollution by particles which having different sizes from thermal power plants in real sizes using a 3D model. For the adequacy of the mathematical model, a test problem was solved using different turbulent models. To assess the applicability of the mathematical model, the numerical algorithm and the choice of the optimal turbulent model, experimental data and numerical results of other authors were used. The obtained numerical simulation results are in good agreement with the experimental results and the numerical results of other authors. And to obtain more accurate numerical results for the experimental data for turbulent models ($k - \varepsilon $,$k - \omega $), there were certain corresponding boundary conditions for kinetic energy. Also, profiles of all flow characteristics were compared with and without particles and some effects of the particle on the flow were identified.


2013 ◽  
Vol 365-366 ◽  
pp. 370-374
Author(s):  
Hai Chu Chen ◽  
Fang Yi Wu ◽  
Ping Zhang ◽  
Gen Liang Xiong ◽  
Yin Fa Zhu

It researched a new type of intelligent thermostatic mixing valve which could keep the temperature and flux of the valve outlet water constant through the adaptive controller. It firstly established the mathematical model about angle - flux and angle - temperature of the valve. And then it based on thekεturbulence model and applied Fluent software to numerical simulation of the valve about the flow field. Finally, it compared the simulation results with the calculated value. The results show that they are basically consistent, prove the correctness of the theoretical research, and can be used to improve designing of the thermostatic valve.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Author(s):  
Sudhakar Yadav ◽  
Vivek Kumar

This study develops a mathematical model for describing the dynamics of the banana-nematodes and its pest detection method to help banana farmers. Two criteria: the mathematical model and the type of nematodes pest control system are discussed. The sensitivity analysis, local stability, global stability, and the dynamic behavior of the mathematical model are performed. Further, we also develop and discuss the optimal control mathematical model. This mathematical model represents various modes of management, including the initial release of infected predators as well as the destroying of nematodes. The theoretical results are shown and verified by numerical simulations.


Author(s):  
Felipe Ribolla Masetti ◽  
Pedro Cardozo de Mello ◽  
Guilherme F. Rosetti ◽  
Eduardo A. Tannuri

This paper presents small-scale low-speed maneuvering tests with an oceanographic research vessel and the comparison with mathematical model using the real time maneuvering simulator developed by the University of São Paulo (USP). The tests are intended to verify the behavior of the vessel and the mathematical model under transient and low speed tests. The small-scale tests were conducted in deep and shallow waters, with a depth-draft ratio equal to 1.28, in order to verify the simulator ability to represent the vessel maneuverability on both depth conditions. The hydrodynamic coefficients used in the simulator model were obtained by CFD calculations and wind tunnel model tests carried out for this vessel. Standard turning circle and accelerating turn maneuvers were used to compare the experimental and numerical results. A fair agreement was achieved for shallow and deep water. Some differences were observed mainly in the initial phase of the accelerating turn test.


Sign in / Sign up

Export Citation Format

Share Document