scholarly journals The Potential Use of Platelet-Rich Plasma to Reconstruct the Microtia Chondrocyte in Human Auricular Cartilage Regeneration

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Wei-Hong Chen ◽  
Hen-Yu Liu ◽  
Ching-Yu Tsai ◽  
Chia-che Wu ◽  
Hong-Jian Wei ◽  
...  

Microtia is characterized as an incomplete auricular development and surgical reconstruction for microtia is still limited even with emerging developments. This study aimed to apply bionanomaterials (PRP/collagen scaffold) for human auricular neocartilage reconstruction by using microtia chondrocytes. The results showed that PRP (TGF-β1 750 pg/mL and 1 ng/mL) increased cell viability of microtia chondrocytes during in vitro 9-day cultures. Additionally, chondrogenic-specific mRNA of Aggrecan and type II collagen (Col II) was significantly and continuously expressed with PRP treatment during the 21-day in vitro expansion. Tissue engineering of auricular neocartilage was performed by seeding microtia chondrocytes in bionanomaterials (PRP/collagen scaffold) 3-dimensional (3D) cultures. Immunohistochemistry (IHC) of Col II showed intensive signals between cells and matrix after 4-week cultures. Conclusion. Our results demonstrated that PRP promotes proliferation and redifferentiation of microtia chondrocytes and provides regenerative potentials in auricular neocartilage reconstruction.

2017 ◽  
Vol 65 (4) ◽  
pp. 359-367 ◽  
Author(s):  
Giulia Tarquinio DEMARCO ◽  
Laura Borges KIRSCHNICK ◽  
Luis Bayardo WATSON ◽  
Marcus Cristian MUNIZ CONDE ◽  
Flávio Fernando DEMARCO ◽  
...  

ABSTRACT Regenerative therapies have been widely developed in dentistry and it is important to incorporate dentists’ knowledge of these new therapies into the dental clinic routine. This study reviewed the literature on regenerative therapies and clinical applications. Tissue engineering has contributed to changes in the paradigm of restorative health sciences. Its pillars underpin the techniques of tissue and organ regeneration. Despite the majority of studies in this field being in vitro, a range of preclinical studies and methodologies has been formed using these principles and they are already being used on humans. The use of platelet-rich plasma and platelet-rich fibrin in surgery as natural scaffolds for the reestablishment of bone and periodontal tissue are often reported in the literature and clinical trials using this approach have shown promising results. Stem cells from autologous dental pulp have been successfully applied in bone tissue regeneration using natural collagen scaffold in humans. In addition, revascularization of the root canal already appears in the literature as a promising alternative to apexification. The principle behind this therapy is the use of the blood clot as a scaffold and the migration of stem cells of the apical papilla to regenerate the dental pulp organ. Final considerations: Although still in the early stages, regenerative therapies can now be used in dental practice. Knowledge of the principles governing these therapies should be understood by the dentist for use in clinical practice.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Aniela Saplonţai-Pop ◽  
Augustin Moţ ◽  
Marioara Moldovan ◽  
Radu Oprean ◽  
Radu Silaghi-Dumitrescu ◽  
...  

AbstractBackground: The extracts of Allium cepa are known for their medical use: antioxidant, antiinflammatory, antimicrobial, fibrinolytic and antiplatelet properties. Our study aims to establish, using in vitro tests, the antiplatelet and antioxidant character, the link between them and the extract acidity, from seven varieties of A. cepa. Methodology: The qualitative and quantitative presence of polyphenols and anthocyanins in the extracts was determined using UV-Vis and HPLC. Quantitative determination of the thiosulfinates compounds was calculated using their reaction with 4-mercaptopyridine. Antioxidant character was determined using 3 methods (FC, DPPH and TEAC), and antiplatelet effect was measured by in vitro tests on platelet rich plasma obtained from human blood. Principal Findings/Results: The white variety of A. cepa has the most alkaline pH, the largest amount of thiosulfinate compounds and the most powerful antiplatelet effect, but a very small amount of flavonoids and an antioxidant effect almost nonexistent, in contrast with red variety of A. cepa which is the opposite. Conclusions/Significance: The white variety of A. cepa had very high anitiplatelet activity suggesting the potential use of A. cepa extract in treating cardiovascular diseases.


2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Heloisa Einloft Palma ◽  
Miguel Gallio ◽  
Gabriele Biavaschi da Silva ◽  
Camila Cantarelli ◽  
Kalyne Bertolin ◽  
...  

ABSTRACT: In healthy cartilage, chondrocytes maintain an expression of collagens and proteoglycans and are sensitive to growth factors and cytokines that either enhance or reduce type II collagen synthesis. In osteoarthritis, pro-inflammatory cytokines, such as IL-6, induce overexpression of metalloproteinases (MMP) and decreasing synthesis of aggrecan. Use of chondroprotectors agents, such as Platelet-Rich Plasma (PRP) and triamcinolone (TA) are alternatives to reduce the progression of joint damage. In this study, we used chondrocytes extracted from metacarpophalangeal joints of healthy horses as the experimental model. Cells were treated in vitro with PRP or TA. No differences were observed between these treatments in comparison to the control group when the expressions of MMP9, MMP13, IL-6 and ACAN genes were evaluated (P<0.05). With these results, we can suggest that the treatments were not deleterious to equine cultured chondrocyte, once they did not stimulate MMPs and IL-6 synthesis or caused changes in ACAN.


Cartilage ◽  
2021 ◽  
pp. 194760352198941
Author(s):  
Clara Levinson ◽  
Emma Cavalli ◽  
Brigitte von Rechenberg ◽  
Marcy Zenobi-Wong ◽  
Salim E. Darwiche

Objective Hyaluronic acid–transglutaminase (HA-TG) is an enzymatically crosslinkable adhesive hydrogel with chondrogenic properties demonstrated in vitro and in an ectopic mouse model. In this study, we investigated the feasibility of using HA-TG in a collagen scaffold to treat chondral lesions in an ovine model, to evaluate cartilage regeneration in a mechanically and biologically challenging joint environment, and the influence of the surgical procedure on the repair process. Design Chondral defects of 6-mm diameter were created in the stifle joint of skeletally mature sheep. In a 3-month study, 6 defects were treated with HA-TG in a collagen scaffold to test the stability and biocompatibility of the defect filling. In a 6-month study, 6 sheep had 12 defects treated with HA-TG and collagen and 2 sheep had 4 untreated defects. Histologically observed quality of repair tissue and adjacent cartilage was semiquantitatively assessed. Results HA-TG adhered to the native tissue and did not cause any detectable negative reaction in the surrounding tissue. HA-TG in a collagen scaffold supported infiltration and chondrogenic differentiation of mesenchymal cells, which migrated from the subchondral bone through the calcified cartilage layer. Additionally, HA-TG and collagen treatment led to better adjacent cartilage preservation compared with empty defects ( P < 0.05). Conclusions This study demonstrates that the adhesive HA-TG hydrogel in a collagen scaffold shows good biocompatibility, supports in situ cartilage regeneration and preserves the surrounding cartilage. This proof-of-concept study shows the potential of this approach, which should be further considered in the treatment of cartilage lesions using a single-step procedure.


2020 ◽  
Vol 7 (4) ◽  
pp. 3697-3708
Author(s):  
Vy Thi-Kieu Tu ◽  
Ha Thi-Ngan Le ◽  
Xuan Hoang-Viet To ◽  
Phuc Dang-Ngoc Nguyen ◽  
Phat Duc Huynh ◽  
...  

Introduction: Cartilage damage is one of the injuries that is difficult for the human body to self-repair due to the avascular and completely mature tissue with only few stem or progenitor cells present. Recently, some studies showed that engineered cartilage tissues could be used to treat or improve this injury. This study aimed to produce the cartilage microtissues from the differentiation of scaffold-free spheroids composed of human adipose-derived stem cells. Methods: Human adipose-derived stem cells (ADSCs) were isolated and expanded following the previously published study. They were then cultured in the non-adherent condition to produce spheroids. The spheroids of the ADSCs were collected and induced into cartilage microtissues in the inducible medium for 21 days. The cartilage microtissue was characterized by some cartilage phenotype markers, including the accumulation of extracellular matrix proteins (aggrecan, glycosaminoglycan, and type II collagen), and the expression of certain genes specific to chondrocytes (Sox9, Col2, Col1, and Acan). Results: The results showed that the expression of chondrocyte-specific genes gradually increased during the 21 days of culture for differentiation. On day 21, the microtissues expressed aggrecan, glycosaminoglycan, and type II collagen proteins. Conclusion: This study demonstrated that cartilage microtissues could easily be produced from scaffold-free spheroids from ADSCs. Thus, cartilage microtissues can be produced in this manner for in vivo transplantation to promote cartilage regeneration, or to produce cartilage tissues for in vitro studies.  


Cartilage ◽  
2020 ◽  
pp. 194760352096116
Author(s):  
Margot Rikkers ◽  
Koen Dijkstra ◽  
Bastiaan F. Terhaard ◽  
Jon Admiraal ◽  
Riccardo Levato ◽  
...  

Objective The aims of the study were to assess the anti-inflammatory properties of platelet-rich plasma (PRP) and investigate its regenerative potential in osteoarthritic (OA) human chondrocytes. We hypothesized that PRP can modulate the inflammatory response and stimulate cartilage regeneration. Design Primary human chondrocytes from OA knees were treated with manually prepared PRP, after which cell migration and proliferation were assessed. Next, tumor necrosis factor-α–stimulated chondrocytes were treated with a range of concentrations of PRP. Expression of genes involved in inflammation and chondrogenesis was determined by real-time polymerase chain reaction. In addition, chondrocytes were cultured in PRP gels and fibrin gels consisting of increasing concentrations of PRP. The production of cartilage extracellular matrix (ECM) was assessed. Deposition and release of glycosaminoglycans (GAG) and collagen was quantitatively determined and visualized by (immuno)histochemistry. Proliferation was assessed by quantitative measurement of DNA. Results Both migration and the inflammatory response were altered by PRP, while proliferation was stimulated. Expression of chondrogenic markers COL2A1 and ACAN was downregulated by PRP, independent of PRP concentration. Chondrocytes cultured in PRP gel for 28 days proliferated significantly more when compared with chondrocytes cultured in fibrin gels. This effect was dose dependent. Significantly less GAGs and collagen were produced by chondrocytes cultured in PRP gels when compared with fibrin gels. This was qualitatively confirmed by histology. Conclusions PRP stimulated chondrocyte proliferation, but not migration. Also, production of cartilage ECM was strongly downregulated by PRP. Furthermore, PRP did not act anti-inflammatory on chondrocytes in an in vitro inflammation model.


2016 ◽  
Vol 241 (18) ◽  
pp. 2104-2111 ◽  
Author(s):  
Jingkai Wang ◽  
Yiqing Tao ◽  
Xiaopeng Zhou ◽  
Hao Li ◽  
Chengzhen Liang ◽  
...  

Recent studies indicated that cell-based therapy could be a promising approach to treat intervertebral disc degeneration. Though the harsh microenvironment in disc is still challenging to implanted cells, it could be overcome by pre-conditioning graft cells before transplantation, suggested by previous literatures. Therefore, we designed this study to identify the potential effect of chondrogenic pre-differentiation on adipose-derived mesenchymal stem cells in intervertebral disc-like microenvironment, characterized by limited nutrition, acidic, and high osmosis in vitro. Adipose-derived mesenchymal stem cells of rat were divided into five groups, embedded in type II collagen scaffold, and cultured in chondrogenic differentiation medium for 0, 3, 7, 10, and 14 days. Then, the adipose-derived mesenchymal stem cells were implanted and cultured in intervertebral disc-like condition. The proliferation and differentiation of adipose-derived mesenchymal stem cells were evaluated by cell counting kit-8 test, real-time quantitative polymerase chain reaction, and Western blotting and immunofluorescence analysis. Analyzed by the first week in intervertebral disc-like condition, the results showed relatively greater proliferative capability and extracellular matrix synthesis ability of the adipose-derived mesenchymal stem cells pre-differentiated for 7 and 10 days than the control. We concluded that pre-differentiation of rat adipose-derived mesenchymal stem cells in chondrogenic culture medium for 7 to 10 days could promote the regeneration effect of adipose-derived mesenchymal stem cells in intervertebral disc-like condition, and the pre-differentiated cells could be a promising cell source for disc regeneration medicine.


2020 ◽  
pp. 088532822095441
Author(s):  
Haiqiong Yue ◽  
Janak L Pathak ◽  
Rui Zou ◽  
Lei Qin ◽  
Ting Liao ◽  
...  

Fibrin gel-based scaffolds have promising potential for microtia reconstruction. Autologous chondrocytes and chondrocyte cell sheets are frequently used seed cell sources for cartilage tissue engineering. However, the aesthetic outcome of chondrocyte-based microtia reconstruction is still not satisfactory. In this study, we aimed to fabricate the chondrocytes/chondrocyte-microtissues laden fibrin gel auricular scaffold for microtia reconstruction. We designed a unique auricular mold that could fabricate a fibrin gel scaffold resembling human auricle anatomy. Primary chondrocytes were harvested from rabbit auricular cartilage, and chondrocyte cell sheets were developed. Chondrocyte-microtissues were prepared from the cell sheets. The mixture of chondrocytes/chondrocyte-microtissues was laden in fibrin gel during the auricular scaffold fabrication. The protrusions and recessed structure in the auricular scaffold surface were still clearly distinguishable. After a one-week in vitro culture, the 3 D structure and auricular anatomy of the scaffold were retained. And followed by eight-week subcutaneous implantation, cartilaginous tissue was regenerated in the artificial auricular structure as indicated by the results of H&E, Toluidine blue, Safranin O, and type II collagen (immunohistochemistry) staining. Protrusions and depressions of the auricular scaffold were slightly deformed, but the overall auricular anatomy was maintained after 8-week in vivo implantation. Extracellular matrix components content were similar in artificial auricular cartilage and rabbit native auricular cartilage. In conclusion, the mixture of chondrocytes/chondrocyte-microtissues laden fibrin gel auricular scaffold showed a promising potential for cartilaginous tissue regeneration, suggesting this as an effective approach for autologous chondrocyte-based microtia reconstruction.


Author(s):  
Peiling Zhang ◽  
Yanqun Liu ◽  
Litao Jia ◽  
Zheng Ci ◽  
Wei Zhang ◽  
...  

In vitro construction is a major trend involved in cartilage regeneration and repair. Satisfactory in vitro cartilage regeneration depends on a suitable culture system. Current chondrogenic culture systems with a high content of transforming growth factor beta-1 effectively promote cartilaginous extracellular matrix (ECM) production but inhibit chondrocyte survival. As is known, inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway acts in blocking the progression of osteoarthritis by reducing chondrocyte apoptosis and cartilage destruction. However, whether inhibiting JNK signaling resists the inhibitory effect of current chondrogenic medium (CM) on cell survival and affects in vitro auricular cartilage regeneration (including cell proliferation, ECM synthesis, and degradation) has not been investigated. In order to address these issues and optimize the chondrogenic culture system, we generated a three-dimensional in vitro auricular cartilage regeneration model to investigate the effects of SP600125 (a JNK-specific inhibitor) on chondrocyte proliferation and ECM metabolism. SP600125 supplementation efficiently promoted cell proliferation at both cellular and tissue levels and canceled the negative effect of our chondrogenic culture system on cell survival. Moreover, it significantly inhibited ECM degradation by reducing the expressions of tumor necrosis factor-alpha, interleukin-1-beta, and matrix metalloproteinase 13. In addition, SP600125 inhibited ECM synthesis at both cellular and tissue levels, but this could be canceled and even reversed by adding chondrogenic factors; yet this enabled a sufficient number of chondrocytes to be retained at the same time. Thus, SP600125 had a positive effect on in vitro auricular cartilage regeneration in terms of cell proliferation and ECM degradation but a negative effect on ECM synthesis, which could be reversed by adding CM. Therefore, a combination of SP600125 and CM might help in optimizing current chondrogenic culture systems and achieve satisfactory in vitro cartilage regeneration by promoting cell proliferation, reducing ECM degradation, and enhancing ECM synthesis.


Sign in / Sign up

Export Citation Format

Share Document