scholarly journals Numerical Simulation Characteristics of Logging Response in Water Injection Well by Reproducing Kernel Method

2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Ming-Jing Du ◽  
Yu-Lan Wang ◽  
Temuer Chaolu

Reproducing kernel Hilbert space method (RKHSM) is an effective method. This paper, for the first time, uses the traditional RKHSM for solving the temperature field in two phase flows of multilayer water injection well. According to 2D oil-water temperature field mathematical model of two phase flows in cylindrical coordinates, selecting the properly initial and boundary conditions, by the process of Gram-Schmidt orthogonalization, the analytical solution was given by reproducing kernel functions in a series expansion form, and the approximate solution was expressed byn-term summation. The satisfied numerical results were carried out by Mathematica 7.0, showing that the larger the difference between injected water temperature and initial borehole temperature or water injection conditions, the more obvious the indication of water accepting zones. The numerical examples evidence the feasibility and effectiveness of the proposed method of the two phase flows in engineering.

2020 ◽  
Vol 4 (2) ◽  
pp. 27 ◽  
Author(s):  
Onur Saldır ◽  
Mehmet Giyas Sakar ◽  
Fevzi Erdogan

In this research, obtaining of approximate solution for fractional-order Burgers’ equation will be presented in reproducing kernel Hilbert space (RKHS). Some special reproducing kernel spaces are identified according to inner products and norms. Then an iterative approach is constructed by using kernel functions. The convergence of this approach and its error estimates are given. The numerical algorithm of the method is presented. Furthermore, numerical outcomes are shown with tables and graphics for some examples. These outcomes demonstrate that the proposed method is convenient and effective.


2018 ◽  
Vol 23 (4) ◽  
pp. 538-553
Author(s):  
Mohammadreza Foroutan ◽  
Ali Ebadian ◽  
Hadi Rahmani Fazli

Based on the reproducing kernel Hilbert space method, a new approach is proposed to approximate the solution of the Black-Scholes equation with Dirichlet boundary conditions and introduce the reproducing kernel properties in which the initial conditions of the problem are satisfied. Based on reproducing kernel theory, reproducing kernel functions with a polynomial form will be constructed in the reproducing kernel spaces spanned by the generalized Jacobi basis polynomials. Some new error estimates for application of the method are established. The convergence analysis is established theoretically. The proposed method is successfully used for solving an option pricing problem arising in financial modelling. The ideas and techniques presented in this paper will be useful for solving many other problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the KdV equation with initial condition based on the reproducing kernel theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples have also been studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented method is effective.


Author(s):  
Esra Karatas Akgül

On the basis of a reproducing kernel Hilbert space, reproducing kernel functions for solving the coefficient inverse problem for the kinetic equation are given in this paper. Reproducing kernel functions found in the reproducing kernel Hilbert space imply that they can be considered for solving such inverse problems. We obtain approximate solutions by reproducing kernel functions. We show our results by a table. We prove the eciency of the reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation.


2017 ◽  
Vol 17 (15&16) ◽  
pp. 1292-1306 ◽  
Author(s):  
Rupak Chatterjee ◽  
Ting Yu

The support vector machine (SVM) is a popular machine learning classification method which produces a nonlinear decision boundary in a feature space by constructing linear boundaries in a transformed Hilbert space. It is well known that these algorithms when executed on a classical computer do not scale well with the size of the feature space both in terms of data points and dimensionality. One of the most significant limitations of classical algorithms using non-linear kernels is that the kernel function has to be evaluated for all pairs of input feature vectors which themselves may be of substantially high dimension. This can lead to computationally excessive times during training and during the prediction process for a new data point. Here, we propose using both canonical and generalized coherent states to calculate specific nonlinear kernel functions. The key link will be the reproducing kernel Hilbert space (RKHS) property for SVMs that naturally arise from canonical and generalized coherent states. Specifically, we discuss the evaluation of radial kernels through a positive operator valued measure (POVM) on a quantum optical system based on canonical coherent states. A similar procedure may also lead to calculations of kernels not usually used in classical algorithms such as those arising from generalized coherent states.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ghaleb Gumah ◽  
Khaled Moaddy ◽  
Mohammed Al-Smadi ◽  
Ishak Hashim

We present an efficient modern strategy for solving some well-known classes of uncertain integral equations arising in engineering and physics fields. The solution methodology is based on generating an orthogonal basis upon the obtained kernel function in the Hilbert spaceW21a,bin order to formulate the analytical solutions in a rapidly convergent series form in terms of theirα-cut representation. The approximation solution is expressed byn-term summation of reproducing kernel functions and it is convergent to the analytical solution. Our investigations indicate that there is excellent agreement between the numerical results and the RKHS method, which is applied to some computational experiments to demonstrate the validity, performance, and superiority of the method. The present work shows the potential of the RKHS technique in solving such uncertain integral equations.


2018 ◽  
Vol 22 ◽  
pp. 01028
Author(s):  
Ali Akgül ◽  
Esra Karatas Akgül ◽  
Sahin Korhan ◽  
Mustafa Inc

Reproducing kernel functions are obtained for the solution of generalized Kuramoto–Sivashinsky (GKS) equation in this paper. These reproducing kernel functions are valuable in the reproducing kernel Hilbert space method. They will be useful for interested researchers.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Mengmeng Li ◽  
Qi Li ◽  
Gang Bi ◽  
Jiaen Lin

The pressure injection falloff test for water injection well has the advantages of briefness and convenience, with no effect on the oil production. It has been widely used in the oil field. Tremendous attention has been focused on oil-water two-phase flow model based on the Perrine-Martin theory. However, the saturation gradient is not considered in the Perrine-Martin method, which may result in errors in computation. Moreover, water imbibition is important for water flooding in natural fractured reservoirs, while the pressure transient analysis model has rarely considered water imbibition. In this paper, we proposed a semianalytical oil-water two-phase flow imbibition model for pressure transient analysis of a water injection well in natural fractured reservoirs. The parameters in this model, including total compressibility coefficient, interporosity flow coefficient, and total mobility, change with water saturation. The model was solved by Laplace transform finite-difference (LTFD) method coupled with the quasi-stationary method. Based on the solution, the model was verified by the analytical method and a field water injection test. The features of typical curves and the influences of the parameters on the typical curves were analyzed. Results show that the shape of pressure curves for single phase flow resembles two-phase flow, but the position of the two-phase flow curves is on the upper right of the single phase flow curves. The skin factor and wellbore storage coefficient mainly influence the peak value of the pressure derivatives and the straight line of the early period. The shape factor has a major effect on the position of the “dip” of pressure derivatives. The imbibition rate coefficient mainly influences the whole system radial flow period of the curves. This work provides valuable information in the design and evaluation of stimulation treatments in natural fractured reservoirs.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 245 ◽  
Author(s):  
Ali Akgül ◽  
Esra Karatas Akgül ◽  
Dumitru Baleanu ◽  
Mustafa Inc

In this paper, we implement reproducing kernel Hilbert space method to tenth order boundary value problems. These problems are important for mathematicians. Different techniques were applied to get approximate solutions of such problems. We obtain some useful reproducing kernel functions to get approximate solutions. We obtain very efficient results by this method. We show our numerical results by tables.


2014 ◽  
Vol 19 (2) ◽  
pp. 180-198 ◽  
Author(s):  
Maryam Mohammadi ◽  
Reza Mokhtari

This paper is concerned with a technique for solving a class of nonlinear systems of partial differential equations (PDEs) in the reproducing kernel Hilbert space. The analytical solution is represented in the form of series. An iterative method is given to obtain the approximate solution. The convergence analysis is established theoretically. The proposed method is successfully used for solving a coupled system of viscous Burgers’ equations and a nonlinear hyperbolic system. Performance of the method is tested in terms of various error norms. In the case of non-availability of exact solution, it is compared with the existing methods.


Sign in / Sign up

Export Citation Format

Share Document