scholarly journals MicroRNA-143/-145 in Cardiovascular Diseases

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wang Zhao ◽  
Shui-Ping Zhao ◽  
Yu-Hong Zhao

MicroRNAs (miRNAs) play an essential role in the onset and development of many cardiovascular diseases. Increasing evidence shows that miRNAs can be used as potential diagnostic biomarkers for cardiovascular diseases, and miRNA-based therapy may be a promising therapy for the treatment of cardiovascular diseases. The microRNA-143/-145 (miR-143/-145) cluster is essential for differentiation of vascular smooth muscle cells (VSMCs) and determines VSMC phenotypic switching. In this review, we summarize the recent progress in knowledge concerning the function of miR-143/-145 in the cardiovascular system and their role in cardiovascular diseases. We discuss the potential role of miR-143/-145 as valuable biomarkers for cardiovascular diseases and explore the potential strategy of targeting miR-143 and miR-145.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Takayuki Matsumoto ◽  
Rita C. Tostes ◽  
R. Clinton Webb

The endothelium plays a pivotal role in vascular homeostasis, and endothelial dysfunction is a major feature of cardiovascular diseases, such as arterial hypertension, atherosclerosis, and diabetes. Recently, uridine adenosine tetraphosphate (Up4A) has been identified as a novel and potent endothelium-derived contracting factor (EDCF). Up4A structurally contains both purine and pyrimidine moieties, which activate purinergic receptors. There is an accumulating body of evidence to show that Up4A modulates vascular function by actions on endothelial and smooth muscle cells. In this paper, we discuss the effects of Up4A on vascular function and a potential role for Up4A in cardiovascular diseases.


2020 ◽  
Vol 21 (14) ◽  
pp. 5160 ◽  
Author(s):  
Nadine Wehbe ◽  
Suzanne Awni Nasser ◽  
Yusra Al-Dhaheri ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.


2011 ◽  
Vol 100 (3) ◽  
pp. 83a
Author(s):  
María Rodríguez-Moyano ◽  
Ignacio Díaz-Carrasco ◽  
Alejandro Dominguez-Rodriguez ◽  
Eva Calderon-Sanchez ◽  
Antonio Ordoñez ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (1) ◽  
pp. e0115342 ◽  
Author(s):  
Loïc Louvet ◽  
Dominique Bazin ◽  
Janine Büchel ◽  
Sonja Steppan ◽  
Jutta Passlick-Deetjen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document