scholarly journals Microstructure and Thermal Properties of Polypropylene/Clay Nanocomposites with TiCl4/MgCl2/Clay Compound Catalyst

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Limei Wang ◽  
Aihua He

Polypropylene (PP)/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR) spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that theαphase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA) examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC) scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.

2018 ◽  
Vol 32 (8) ◽  
pp. 1078-1091 ◽  
Author(s):  
Sibel Erol Dağ ◽  
Pınar Acar Bozkurt ◽  
Fatma Eroğlu ◽  
Meltem Çelik

A series of polystyrene (PS)/unmodified Na-montmorillonite (Na-MMT) composites were prepared via in situ radical polymerization. The prepared composites were characterized using various techniques. The presence of various functional groups in the unmodified Na-MMT and PS/unmodified Na-MMT composite was confirmed by Fourier transform infrared spectroscopy. Morphology and particle size of prepared composites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the XRD and TEM results, the interlayer spacing of MMT layers was expanded. SEM images showed a spongy and porous-shaped morphology of composites. TEM revealed the Na-MMT intercalated in PS matrix. The thermal stability of PS/unmodified Na-MMT composites was significantly improved as compared to PS, which is confirmed using thermogravimetric analysis (TGA). The TGA curves indicated that the decomposition temperature of composites is higher at 24–51°C depending on the composition of the mixture than that of pure PS. The differential scanning calorimetry (DSC) results showed that the glass transition temperature of composites was higher as compared to PS. The moisture retention, water uptake, Brunauer–Emmett–Teller specific surface area, and specific pore volume of composites were also investigated. Water resistance of the composites can be greatly improved.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Mohammad Galehassadi ◽  
Fatemeh Hosseinzadeh ◽  
Mehrdad Mahkam

Abstract Nanocomposites of polystyrene (PS) was prepared with new styrenic ionic liquid, N-(4-vinyl benzyl)-(N,N-dimethylamino) pyridinium chloride[VBMAP], surfactants used as organic modifications for the clays. Sodium montmorillonite (Na-MMT) was successfully modified by [VBMAP] to become OMMT through cation exchange technique which is shown by the increase of basalspacing of clay by XRD. The composite material based on polystyrene and organo-modified montmorillonite (OMMT) was prepared by insitu polymerization and characterized. The morphology of the polymer/clay hybrids was evaluated by X-ray diffraction (XRD) ,transmission electron microscopy (TEM) and scanning electron microscopy (SEM), showing good overall dispersion of the clay. The thermal stability of the polymer/clay nanocomposites were enhanced, as evaluated by thermogravimetric analysis.


2014 ◽  
Vol 915-916 ◽  
pp. 780-783
Author(s):  
Hong Wang ◽  
Ming Tian Li ◽  
Yue Lu ◽  
Di Liu

Pyrrole and m-toluidine copolymer (P(PY/MT)) / montmorillonite (MMT) Composites were prepared by in situ chemical polymerization of pyrrole with m-toluidine monomer in the presence of montmorillonite. The structural, morphological and thermal properties of these composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). X-ray diffraction result for P(PY/MT)-MMT illuminated the intercalation of P(PY/MT) copolymer between the clay layers. The FT-IR result showed the successful incorporation of montmorillonite clay in the prepared P(PY/MT)/MMT composite. The higher thermal stability of high MMT content rate might be attributed to its higher chain compactness due to the interfacial interaction between the P(PY/MT) and the clay.


2011 ◽  
Vol 55-57 ◽  
pp. 1584-1587 ◽  
Author(s):  
Li Mei Wang

Polypropylene(PP)/clay nanocomposites were prepared by solution blending. The microstructure of PP/clay nanocomposites was studied by wide-angle X-ray diffraction (XRD) analysis. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to investigate thermal properties of PP/clay nanocomposites. XRD pattern prove that clay layers were exfoliated into nanometer size in PP matrix and that α-Phase crystallite was the main crystallite of PP in PP/clay nanocomposites. TGA examinations confirmed that the maximum decomposition temperature of PP/clay nanocomposites was higher than that of neat PP and that the thermal stability of PP/clay nanocomposites rose noticeably. Results of DSC scans showed the crystalliztion temperature of nanocomposites was slightly bigger than that of pure PP due to the efficient nucleating effects of clay layers.


2018 ◽  
Vol 54 (5) ◽  
pp. 829-850 ◽  
Author(s):  
Anindya Dutta ◽  
Sabapathy Sankarpandi ◽  
Anup K Ghosh

To identify the effect of rheological influence on the development of microstructure in polypropylene/clay nanocomposites and thereby the influence of the developed microstructure on the foamability of the nanocomposites, a set of nanocomposites was prepared and batch foamed using supercritical CO2. Polypropylene and nanoclay were selected for preparing nanocomposites. During foaming, the nanocomposites were saturated with CO2 gas for three different time periods and subsequently in-situ heating was done to achieve cell growth. The gas saturation was done at subcritical condition followed by the foaming at critical condition of CO2. Thermal studies of the composites were investigated through differential scanning calorimetry, and clay dispersion morphology was investigated and validated using wide-angle X-ray diffraction, transmission electron microscopy, and parallel plate rheology. The improvement in foam morphology (cell size and cell density) and subsequent reduction in foam density was analyzed. The fingerprint characteristics of nanocomposites have an enormous role on foam structure development. With the increase in clay loading, cell density increased; furthermore, with an increase in saturation time, there was a phenomenal decrease in expansion ratio of neat polypropylene due to CO2-induced crystallization which could be mitigated by the incorporation of nanoclay into the polypropylene matrix. Therefore, nanoclay could be exploited as the inhibitor of CO2-induced crystallization.


2014 ◽  
Vol 941-944 ◽  
pp. 334-337
Author(s):  
Hong Wang ◽  
Rui Song Yang ◽  
Ying Wang

Poly (m-toluidine)(PMT) / montmorillonite (MMT) Composites with thermal stability were synthesized by in situ chemical polymerization of m-toluidine monomer in the presence of montmorillonite. The PMT /MMT composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The FT-IR result displayed the successful incorporation of montmorillonite clay in the prepared PMT/MMT composite. X-ray diffraction result for PMT/MMT showed the intercalation of PMT between the clay layers. The higher thermal stability of high MMT content rate might be attributed to its higher chain compactness due to the interfacial interaction between the PMT and the .MMT.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Işıl Bayram ◽  
Ayhan Oral ◽  
Kamil Şirin

Poly(cyclohexene oxide) (PCHO)/clay nanocomposites were prepared by means ofin situ photoinitiated cationic polymerizationwith initiator moieties immobilized within the silicate galleries of the clay particles. Diphenyliodonium molecules were intercalated via cation exchange process between Cloisite Ca and diphenyliodonium. The polymerization of CHO through the interlayer galleries of the clay can provide a homogenous distribution of the clay layers in the polymer matrix in nanosize and results in the formation of PCHO/clay nanocomposites. The rates of clay loadings were changed to 1%, 3%, and 5% so as to investigate the effect of clay and initiator amount on polymer. X-ray diffraction (XRD) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) methods were used for the characterization of modified clay and nanocomposite materials. Thermal stability of PCHO/MMT nanocomposites was also studied by both differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).


2011 ◽  
Vol 55-57 ◽  
pp. 1588-1592
Author(s):  
Li Mei Wang

Clay was organically modified with one kind of ionic liquild. Organical clay obtained was used to prepare poly(propylene) (PP)/clay nanocomposites by solution blending. Flourier transform infrared (FTIR), wide-angle X-ray diffraction (XRD) and thermogravimetric analysis (TGA) revealed that the ionic liquild was loaded in the galleries of organically modified clay. TGA result show the thermal stability of organically modified clay was superior to clay. XRD patterns indicated that the d-spacing of clay layers increased to 2.96 nm from 1.22 nm of clay. XRD patterns of PP/clay nanocomposites show that clay layers were dispersed in PP matrix by nanometer size.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1397 ◽  
Author(s):  
Elaine dos Santos ◽  
Marcus Fook ◽  
Oscar Malta ◽  
Suédina de Lima Silva ◽  
Itamara Leite

Purified clay was modified with different amounts of alkyl ammonium and phosphonium salts and used as filler in the preparation of PET nanocomposites via melt intercalation. The effect of this type of filler on morphology and thermal and mechanical properties of PET nanocomposites was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile properties, and transmission electron microscopy (TEM). The results showed that the mixture of alkyl ammonium and phosphonium salts favored the production of PET nanocomposites with intercalated and partially exfoliated morphologies with slight improvement in thermal stability. In addition, the incorporation of these organoclays tended to inhibit PET crystallization behavior, which is profitable in the production of transparent bottles.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


Sign in / Sign up

Export Citation Format

Share Document