scholarly journals Cyclic Tensile Strain Induces Tenogenic Differentiation of Tendon-Derived Stem Cells in Bioreactor Culture

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Xu ◽  
Qiang Wang ◽  
Yudong Li ◽  
Yibo Gan ◽  
Pei Li ◽  
...  

Different loading regimens of cyclic tensile strain impose different effects on cell proliferation and tenogenic differentiation of TDSCs in three-dimensional (3D) culture in vitro, which has been little reported in previous literatures. In this study we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation in the custom-designed 3D tensile bioreactor, which revealed that cyclic tensile strain with different frequencies (0.3 Hz, 0.5 Hz, and 1.0 Hz) and amplitudes (2%, 4%, and 8%) had no influence on TDSC viability, while it had different effects on the proliferation and the expression of type I collagen, tenascin-C, tenomodulin, and scleraxis of TDSCs, which was most obvious at 0.5 Hz frequency with the same amplitude and at 4% amplitude with the same frequency. Moreover, signaling pathway from microarray analysis revealed that reduced extracellular matrix (ECM) receptor interaction signaling initiated the tendon genius switch. Cyclic tensile strain highly upregulated genes encoding regulators of NPM1 and COPS5 transcriptional activities as well as MYC related transcriptional factors, which contributed to cell proliferation and differentiation. In particular, the transcriptome analysis provided certain new insights on the molecular and signaling networks for TDSCs loaded in these conditions.

2009 ◽  
Vol 106 (2) ◽  
pp. 506-512 ◽  
Author(s):  
Eijiro Maeda ◽  
Julia C. Shelton ◽  
Dan L. Bader ◽  
David A. Lee

Mechanical stimulus is a regulator of tenocyte metabolism. The present study investigated temporal regulation of the expression of selected genes by tenocytes in isolated fascicles subjected to tensile strain in vitro. Cyclic tensile strain with a 3% amplitude superimposed on a 2% static strain was provided for 10 min, followed by either an unstrained period or continuous cyclic strain until the end of a 24-h incubation period. mRNA expression of selected anabolic and catabolic genes were evaluated with quantitative PCR at 10 min, 1 h, 6 h, and 24 h. The application of 6-h cyclic strain significantly upregulated type III collagen mRNA expression in strained fascicles compared with unstrained controls, but no alterations were observed in mRNA expression of type I collagen and biglycan. Significant downregulation in the expression of the decorin core protein was observed in fascicles subjected to 24-h cyclic strain. MMP3 and MMP13 expression levels were upregulated by the application of 10 min of cyclic strain, followed by a progressive downregulation until the end of the incubation period in both the absence and the presence of the continuing cyclic strain. Accordingly, alterations in the expression of anabolic genes were limited to the upregulation of type III collagen by prolonged exposure to cyclic strain, whereas catabolic genes were upregulated by a small number of strain cycles and downregulated by a prolonged cyclic strain. These findings demonstrate distinctive patterns of mechanoregulation for anabolic and catabolic genes and help our understanding of tenocyte response to mechanical stimulation.


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 5048-5056 ◽  
Author(s):  
Benoit Detry ◽  
Charlotte Erpicum ◽  
Jenny Paupert ◽  
Silvia Blacher ◽  
Catherine Maillard ◽  
...  

Abstract Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to interstitial matrix mainly composed of fibrillar type I collagen, the interactions occurring between lymphatics and their surrounding matrix have been overlooked. In this study, we demonstrate how matrix metalloproteinase (MMP)–2 drives lymphatic morphogenesis through Mmp2-gene ablation in mice, mmp2 knockdown in zebrafish and in 3D-culture systems, and through MMP2 inhibition. In all models used in vivo (3 murine models and thoracic duct development in zebrafish) and in vitro (lymphatic ring and spheroid assays), MMP2 blockage or down-regulation leads to reduced lymphangiogenesis or altered vessel branching. Our data show that lymphatic endothelial cell (LEC) migration through collagen fibers is affected by physical matrix constraints (matrix composition, density, and cross-linking). Transmission electron microscopy and confocal reflection microscopy using DQ-collagen highlight the contribution of MMP2 to mesenchymal-like migration of LECs associated with collagen fiber remodeling. Our findings provide new mechanistic insight into how LECs negotiate an interstitial type I collagen barrier and reveal an unexpected MMP2-driven collagenolytic pathway for lymphatic vessel formation and morphogenesis.


2020 ◽  
Author(s):  
Shinji Iizuka ◽  
Ronald P. Leon ◽  
Kyle P. Gribbin ◽  
Ying Zhang ◽  
Jose Navarro ◽  
...  

ABSTRACTThe scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native type I collagen, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, collagen I, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.


2014 ◽  
Vol 9 (4) ◽  
pp. 367-373
Author(s):  
Giedrė Ramanauskaitė ◽  
Dovilė Žalalytė ◽  
Vytautas Kašėta ◽  
Aida Vaitkuvienė ◽  
Lilija Kalėdienė ◽  
...  

AbstractDue to their unique properties, bone marrow-derived Lin− cells can be used to regenerate damaged tissues, including skin. The objective of our study was to determine the influence of the skin tissue-specific microenvironment on mouse Lin− cell proliferation and migration in vitro. Cells were analyzed for the expression of stem/progenitor surface markers by flow cytometry. Proliferation of MACS-purified cells in 3D cultures was investigated by WST-8 assay. Lin− cell migration was evaluated by in vitro scratch assay. The results obtained show that basement membrane matrix is more effective for Lin− cell proliferation in vitro. However, type I collagen matrix better enhances the re-epithelization process, that depends on the cell migratory properties. These studies are important for preparing cells to be used in transplantation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dong Hyun Choi ◽  
Byoungjun Jeon ◽  
Min Hyuk Lim ◽  
Dong Hun Lee ◽  
Sang-Kyu Ye ◽  
...  

AbstractExposure to microgravity affects human physiology in various ways, and astronauts frequently report skin-related problems. Skin rash and irritation are frequent complaints during space missions, and skin thinning has also been reported after returning to Earth. However, spaceflight missions for studying the physiological changes in microgravity are impractical. Thus, we used a previously developed 3D clinostat to simulate a microgravity environment and investigate whether physiological changes of the skin can be reproduced in a 3D in vitro setting. Our results showed that under time-averaged simulated microgravity (taSMG), the thickness of the endothelial cell arrangement increased by up to 59.75%, indicating skin irritation due to vasodilation, and that the diameter of keratinocytes and fibroblast co-cultured spheroids decreased by 6.66%, representing skin thinning. The α1 chain of type I collagen was upregulated, while the connective tissue growth factor was downregulated under taSMG. Cytokeratin-10 expression was significantly increased in the taSMG environment. The clinostat-based 3D culture system can reproduce physiological changes in the skin similar to those under microgravity, providing insight for understanding the effects of microgravity on human health before space exploration.


2018 ◽  
Vol 7 (5) ◽  
pp. 362-372 ◽  
Author(s):  
Y. Ueda ◽  
A. Inui ◽  
Y. Mifune ◽  
R. Sakata ◽  
T. Muto ◽  
...  

ObjectivesThe aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.MethodsUsing tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.ResultsIn tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased.ConclusionThis study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2


Author(s):  
Vernella V. Vickerman Kelley ◽  
Roger D. Kamm

The in vivo microvasculature is a dynamic structure which is influenced by both biochemical (e.g. cytokines, growth factors) and biophysical factors (e.g. shear stress, interstitial flow). Important regulators of this structure are the endothelial cells which are normally quiescent but under certain conditions are able to form new vascular sprouts. Investigations into the mechanism of capillary morphogenesis of human endothelial cells warrant an in vitro model that closely mimics the physiological in vivo microenvironment. To this end, we have developed a novel microfabricated system which permits 2D and 3D culture of endothelial cells in biologically derived (e.g. type I collagen) or synthetic (self assembling peptides) scaffolds and delivers control flow rates and pressures. This system offers tremendous flexibility with regard to scaffold physical and chemical properties, physiologically relevant mechanical stress induced by surface shear and interstitial flow as well as chemotactic gradients. In addition we are able to directly monitor the progression of vascular networks in response to these critical factors.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


2021 ◽  
Vol 10 (14) ◽  
pp. 3141
Author(s):  
Hyerin Jung ◽  
Yeri Alice Rim ◽  
Narae Park ◽  
Yoojun Nam ◽  
Ji Hyeon Ju

Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this study, we generated induced pluripotent stem cells (iPSCs) from OI patient-derived blood cells harboring a mutation in the COL1A1 gene. Osteoblast (OB) differentiated from OI-iPSCs showed abnormally decreased levels of type I collagen and osteogenic differentiation ability. Gene correction of the COL1A1 gene using CRISPR/Cas9 recovered the decreased type I collagen expression in OBs differentiated from OI-iPSCs. The osteogenic potential of OI-iPSCs was also recovered by the gene correction. This study suggests a new possibility of treatment and in vitro disease modeling using patient-derived iPSCs and gene editing with CRISPR/Cas9.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Sign in / Sign up

Export Citation Format

Share Document