scholarly journals Development of the 1.2 T~1.5 T Permanent Magnetic Resonance Imaging Device and Its Application for Mouse Imaging

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Guangxin Wang ◽  
Huantong Xie ◽  
Shulian Hou ◽  
Wei Chen ◽  
Qiang Zhao ◽  
...  

By improving the main magnet, gradient, and RF coils design technology, manufacturing methods, and inventing new magnetic resonance imaging (MRI) special alloy, a cost-effective and small animal specific permanent magnet-type three-dimensional magnetic resonance imager was developed. The main magnetic field strength of magnetic resonance imager with independent intellectual property rights is 1.2~1.5 T. To demonstrate its effectiveness and validate the mouse imaging experiments in different directions, we compared the images obtained by small animal specific permanent magnet-type three-dimensional magnetic resonance imager with that obtained by using superconductor magnetic resonance imager for clinical diagnosis.

2009 ◽  
Vol 8 (5) ◽  
pp. 7290.2009.00023 ◽  
Author(s):  
Sarah C. Jost ◽  
Lynne Collins ◽  
Sarah Travers ◽  
David Piwnica-Worms ◽  
Joel R. Garbow

Small-animal tumor models are essential for developing translational therapeutic strategies in oncology research, with imaging having an increasingly important role. Magnetic resonance imaging (MRI) offers tumor localization, volumetric measurement, and the potential for advanced physiologic imaging but is less well suited to high-throughput studies and has limited capacity to assess early tumor growth. Bioluminescence imaging (BLI) identifies tumors early, monitors tumor growth, and efficiently measures response to therapeutic intervention. Generally, BLI signals have been found to correlate well with magnetic resonance measurements of tumor volume. However, in our studies of small-animal models of malignant brain tumors, we have observed specific instances in which BLI data do not correlate with corresponding MRIs. These observations led us to hypothesize that use of BLI and MRI together, rather than in isolation, would allow more effective and efficient measures of tumor growth in preclinical studies. Herein we describe combining BLI and MRI studies to characterize tumor growth in a mouse model of glioblastoma. The results led us to suggest a cost-effective, multimodality strategy for selecting cohorts of animals with similar tumor growth patterns that improves the accuracy of longitudinal in vivo measurements of tumor growth and treatment response in preclinical therapeutic studies.


2021 ◽  
Author(s):  
Mucong Li ◽  
Nathan Beaumont ◽  
Chenshuo Ma ◽  
Juan Rojas ◽  
Tri Vu ◽  
...  

Abstract Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x-ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound in a non-invasive manner. PAUSAT can perform three imaging functions simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubble-enabled acoustic angiography of vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are automatically co-registered, with high spatial resolutions at large depth. Using PAUSAT, we conducted proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting genetically-encoded breast tumor expressing photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.


Author(s):  
Hongzhang Zhu ◽  
Shi-Ting Feng ◽  
Xingqi Zhang ◽  
Zunfu Ke ◽  
Ruixi Zeng ◽  
...  

Background: Cutis Verticis Gyrata (CVG) is a rare skin disease caused by overgrowth of the scalp, presenting as cerebriform folds and wrinkles. CVG can be classified into two forms: primary (essential and non-essential) and secondary. The primary non-essential form is often associated with neurological and ophthalmological abnormalities, while the primary essential form occurs without associated comorbidities. Discussion: We report on a rare case of primary essential CVG with a 4-year history of normal-colored scalp skin mass in the parietal-occipital region without symptom in a 34-year-old male patient, retrospectively summarizing his pathological and Computer Tomography (CT) and magnetic resonance imaging (MRI) findings. The major clinical observations on the CT and MR sectional images include a thickened dermis and excessive growth of the scalp, forming the characteristic scalp folds. With the help of CT and MRI Three-dimensional (3D) reconstruction techniques, the characteristic skin changes could be displayed intuitively, providing more evidence for a diagnosis of CVG. At the 5-year followup, there were no obvious changes in the lesion. Conclusion: Based on our observations, we propose that not all patients with primary essential CVG need surgical intervention, and continuous clinical observation should be an appropriate therapy for those in stable condition.


2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Cezary Grochowski ◽  
Kamil Jonak ◽  
Marcin Maciejewski ◽  
Andrzej Stępniewski ◽  
Mansur Rahnama-Hezavah

Purpose: The aim of this study was to assess the volumetry of the hippocampus in the Leber’s hereditary optic neuropathy (LHON) of blind patients. Methods: A total of 25 patients with LHON were randomly included into the study from the national health database. A total of 15 patients were selected according to the inclusion criteria. The submillimeter segmentation of the hippocampus was based on three-dimensional spoiled gradient recalled acquisition in steady state (3D-SPGR) BRAVO 7T magnetic resonance imaging (MRI) protocol. Results: Statistical analysis revealed that compared to healthy controls (HC), LHON subjects had multiple significant differences only in the right hippocampus, including a significantly higher volume of hippocampal tail (p = 0.009), subiculum body (p = 0.018), CA1 body (p = 0.002), hippocampal fissure (p = 0.046), molecular layer hippocampus (HP) body (p = 0.014), CA3 body (p = 0.006), Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)–GC ML DG body (p = 0.003), CA4 body (p = 0.001), whole hippocampal body (p = 0.018), and the whole hippocampus volume (p = 0.023). Discussion: The ultra-high-field magnetic resonance imaging allowed hippocampus quality visualization and analysis, serving as a powerful in vivo diagnostic tool in the diagnostic process and LHON disease course assessment. The study confirmed previous reports regarding volumetry of hippocampus in blind individuals.


Sign in / Sign up

Export Citation Format

Share Document