scholarly journals A Self-Adaptive Hidden Markov Model for Emotion Classification in Chinese Microblogs

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Li Liu ◽  
Dashi Luo ◽  
Ming Liu ◽  
Jun Zhong ◽  
Ye Wei ◽  
...  

Microblogging is increasingly becoming one of the most popular online social media for people to express ideas and emotions. The amount of socially generated content from this medium is enormous. Text mining techniques have been intensively applied to discover the hidden knowledge and emotions from this huge dataset. In this paper, we propose a modified version of hidden Markov model (HMM) classifier, called self-adaptive HMM, whose parameters are optimized by Particle Swarm Optimization algorithms. Since manually labeling large-scale dataset is difficult, we also employ the entropy to decide whether a new unlabeled tweet shall be contained in the training dataset after being assigned an emotion using our HMM-based approach. In the experiment, we collected about 200,000 Chinese tweets from Sina Weibo. The results show that theF-score of our approach gets 76% on happiness and fear and 65% on anger, surprise, and sadness. In addition, the self-adaptive HMM classifier outperforms Naive Bayes and Support Vector Machine on recognition of happiness, anger, and sadness.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259670
Author(s):  
Albertas Dvirnas ◽  
Callum Stewart ◽  
Vilhelm Müller ◽  
Santosh Kumar Bikkarolla ◽  
Karolin Frykholm ◽  
...  

Large-scale genomic alterations play an important role in disease, gene expression, and chromosome evolution. Optical DNA mapping (ODM), commonly categorized into sparsely-labelled ODM and densely-labelled ODM, provides sequence-specific continuous intensity profiles (DNA barcodes) along single DNA molecules and is a technique well-suited for detecting such alterations. For sparsely-labelled barcodes, the possibility to detect large genomic alterations has been investigated extensively, while densely-labelled barcodes have not received as much attention. In this work, we introduce HMMSV, a hidden Markov model (HMM) based algorithm for detecting structural variations (SVs) directly in densely-labelled barcodes without access to sequence information. We evaluate our approach using simulated data-sets with 5 different types of SVs, and combinations thereof, and demonstrate that the method reaches a true positive rate greater than 80% for randomly generated barcodes with single variations of size 25 kilobases (kb). Increasing the length of the SV further leads to larger true positive rates. For a real data-set with experimental barcodes on bacterial plasmids, we successfully detect matching barcode pairs and SVs without any particular assumption of the types of SVs present. Instead, our method effectively goes through all possible combinations of SVs. Since ODM works on length scales typically not reachable with other techniques, our methodology is a promising tool for identifying arbitrary combinations of genomic alterations.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Ritika Sibal ◽  
Ding Zhang ◽  
Julie Rocho-Levine ◽  
K. Alex Shorter ◽  
Kira Barton

Abstract Behavior of animals living in the wild is often studied using visual observations made by trained experts. However, these observations tend to be used to classify behavior during discrete time periods and become more difficult when used to monitor multiple individuals for days or weeks. In this work, we present automatic tools to enable efficient behavior and dynamic state estimation/classification from data collected with animal borne bio-logging tags, without the need for statistical feature engineering. A combined framework of an long short-term memory (LSTM) network and a hidden Markov model (HMM) was developed to exploit sequential temporal information in raw motion data at two levels: within and between windows. Taking a moving window data segmentation approach, LSTM estimates the dynamic state corresponding to each window by parsing the contiguous raw data points within the window. HMM then links all of the individual window estimations and further improves the overall estimation. A case study with bottlenose dolphins was conducted to demonstrate the approach. The combined LSTM–HMM method achieved a 6% improvement over conventional methods such as K-nearest neighbor (KNN) and support vector machine (SVM), pushing the accuracy above 90%. In addition to performance improvements, the proposed method requires a similar amount of training data to traditional machine learning methods, making the method easily adaptable to new tasks.


2016 ◽  
Author(s):  
Hong Gao ◽  
Hua Tang ◽  
Carlos Bustamante

With the rapid production of high dimensional genetic data, one major challenge in genome-wide association studies is to develop effective and efficient statistical tools to resolve the low power problem of detecting causal SNPs with low to moderate susceptibility, whose effects are often obscured by substantial background noises. Here we present a novel method that serves as an optimal technique for reducing background noises and improving detection power in genome-wide association studies. The approach uses hidden Markov model and its derivate Markov hidden Markov model to estimate the posterior probabilities of a markers being in an associated state. We conducted extensive simulations based on the human whole genome genotype data from the GlaxoSmithKline-POPRES project to calibrate the sensitivity and specificity of our method and compared with many popular approaches for detecting positive signals including the χ^2 test for association and the Cochran-Armitage trend test. Our simulation results suggested that at very low false positive rates (<10^-6), our method reaches the power of 0.9, and is more powerful than any other approaches, when the allelic effect of the causal variant is non-additive or unknown. Application of our method to the data set generated by Welcome Trust Case Control Consortium using 14,000 cases and 3,000 controls confirmed its powerfulness and efficiency under the context of the large-scale genome-wide association studies.


Sign in / Sign up

Export Citation Format

Share Document