scholarly journals Hypoxia Associated Proteolytic Processing of OS-9 by the Metalloproteinase Meprinβ

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Barry Lee Martin ◽  
Sabena Michelle Conley ◽  
Regine Simone Harris ◽  
Corshe Devon Stanley ◽  
Jean-Marie Vianney Niyitegeka ◽  
...  

Meprin metalloproteases play a role in the pathology of ischemia/reperfusion- (IR-) induced renal injury. The endoplasmic reticulum-associated protein, osteosarcoma-9 (OS-9), has been shown to interact with the carboxyl-terminal tail of meprinβ. More importantly, OS-9 interacts with the hypoxia inducible factor-1α(HIF-1α) and the prolyl-hydroxylase, proteins which mediate the cell’s response to hypoxia. To determine if OS-9 is a meprin substrate, kidney proteins from meprinαβknockout mice (αβKO) (which lack endogenous meprins) and purified human OS-9 were incubated with activated forms of meprin A and meprin B, and Western blot analysis was used to evaluate proteolytic processing of OS-9. Fragmentation of OS-9 was observed in reactions with meprin B, but not meprin A. To determine whether meprin B cleaves OS-9in vivo, wild-type (WT) and meprinαβKO mice were subjected to IR-induced renal injury. Fragmentation of OS-9 was observed in kidney proteins from WT mice subjected to IR, but not in meprinαβKO counterparts. Transfection of kidney cells (MDCK and HEK293) with meprinβcDNA prevented accumulation of OS-9 following exposure to the hypoxia mimic, CoCl2. These data suggest that meprinβinteraction with OS-9 plays a role in the hypoxia response associated with IR-induced renal injury.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dan Wen ◽  
Yan-Fang Zou ◽  
Yao-Hui Gao ◽  
Qian Zhao ◽  
Yin-Yin Xie ◽  
...  

In this study, rat models of acute kidney injury (AKI) induced by renal ischemia-reperfusion (I/R) and HK-2 cell models of hypoxia-reoxygenation (H/R) were established to investigate the expression of inhibitor of DNA binding 1 (ID1) in AKI, and the regulation relationship between ID1 and hypoxia-inducible factor 1 alpha (HIF-1α). Through western blot, quantitative real-time PCR, immunohistochemistry, and other experiment methods, the induction of ID1 after renal I/R in vivo was observed, which was expressed mainly in renal tubular epithelial cells (TECs). ID1 expression was upregulated in in vitro H/R models at both the protein and mRNA levels. Via RNAi, it was found that ID1 induction was inhibited with silencing of HIF-1α. Moreover, the suppression of ID1 mRNA expression could lead to decreased expression and transcription of HIF-1αduring hypoxia and reoxygenation. In addition, it was demonstrated that both ID1 and HIF-1αcan regulate the transcription of twist. This study demonstrated that ID1 is induced in renal TECs during I/R and can regulate the transcription and expression of HIF-1α.


2004 ◽  
Vol 286 (4) ◽  
pp. F803-F809 ◽  
Author(s):  
Qingqing Wei ◽  
Mohammad M. Alam ◽  
Mong-Heng Wang ◽  
Fushin Yu ◽  
Zheng Dong

Bid is a proapoptotic Bcl-2 family protein, which on activation translocates to mitochondria and induces damage to the organelles. Activation of Bid depends on its proteolytic processing into truncated forms of tBid. Bid is highly expressed in the kidneys; however, little is known about its role in renal pathophysiology. In this study, we initially examined Bid activation in cultured rat kidney proximal tubular cells following ATP depletion. The cells were depleted of ATP by azide incubation in the absence of metabolic substrates and then returned to normal culture medium for recovery. Typical apoptosis developed during recovery of ATP-depleted cells. This was accompanied by Bid cleavage, releasing tBid of 15 and 13 kDa. Bid cleavage was abolished in cells overexpressing Bcl-2, an antiapoptotic gene. It was also suppressed by caspase inhibitors. Peptide inhibitors of caspase-9 were more effective in blocking Bid cleavage compared with inhibitors of caspase-8 and caspase-3. Provision of glucose, a glycolytic substrate, during azide incubation inhibited Bid cleavage as well, indicating that Bid cleavage was initiated by ATP depletion. Consistently, Bid cleavage was also induced following ATP depletion by hypoxia or mitochondrial uncoupling. Of significance, cleaved Bid translocated to mitochondria, suggesting a role for Bid in the development of mitochondrial defects in ATP-depleted cells. Finally, Bid cleavage was induced during renal ischemia-reperfusion in the rat. Together, these results provide the first evidence for Bid activation in kidney cells following ATP depletion in vitro and renal ischemia in vivo.


2007 ◽  
Vol 293 (3) ◽  
pp. H1571-H1580 ◽  
Author(s):  
Ramesh Natarajan ◽  
Fadi N. Salloum ◽  
Bernard J. Fisher ◽  
Evan D. Ownby ◽  
Rakesh C. Kukreja ◽  
...  

Emerging research suggests that oxidant-driven transcription of key cytokine/chemokine networks within the myocardium plays a crucial role in producing ischemia-reperfusion (I/R) injury. We recently showed that activation of hypoxia-inducible factor-1 (HIF-1) attenuated cardiac I/R injury. Diminished injury in these prior studies was associated with significant reductions in circulating interleukin-8 levels, suggesting that HIF-1 may play an important role in modulating postischemic cardiac inflammation. In the current study, we examined the role of HIF-1 activation in modulating proinflammatory chemokine [macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant factor (KC), and lipopolysaccharide-induced CXC chemokine (LIX)] and adhesion molecule [intercellular adhesion molecule (ICAM)-1] expression in murine cardiomyocytes in vitro (HL-1 cell line) and in intact murine hearts following in vivo I/R injury. Our results show that HIF-1 activation induced both pharmacologically by the prolyl hydroxylase inhibitor dimethyloxallyl glycine and via small-interfering RNA (siRNA)-mediated prolyl-4 hydroxylase-2 (P4HA2) gene silencing significantly attenuated tumor necrosis factor-α-induced chemokine (KC and LIX) and ICAM-1 expression in cardiomyocytes. In vivo, postischemic hearts obtained from animals receiving the P4HA2 siRNA (HIF-1 activation) exhibited significantly reduced CXC chemokine (MIP-2, KC, and LIX), CC chemokine (monocyte chemoattractant protein-1), and ICAM-1 expression when compared with postischemic hearts from either saline I/R controls or postischemic hearts from animals receiving a nontargeting control siRNA (no HIF-1 activation). Diminished chemokine and adhesion molecule expression in HIF-1-activated postischemic hearts was associated with significantly reduced polymorphonuclear leukocyte infiltration and myocardial infarct size (>60% reduction P4HA2 siRNA I/R vs. saline I/R, P < 0.001, n = 6). In conclusion, these results demonstrate for the first time that HIF-1 activation following infusion of siRNA to P4HA2 plays a key role in modulating I/R-associated cardiac inflammatory responses.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chenguang Ding ◽  
Xiaoming Ding ◽  
Jin Zheng ◽  
Bo Wang ◽  
Yang Li ◽  
...  

Abstract Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat’s kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3′UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.


1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


1988 ◽  
Vol 8 (3) ◽  
pp. 1179-1185 ◽  
Author(s):  
A Morrison ◽  
E J Miller ◽  
L Prakash

The RAD6 gene of Saccharomyces cerevisiae, which is required for normal tolerance of DNA damage and for sporulation, encodes a 172-residue protein whose 23 carboxyl-terminal residues are almost all acidic. We show that this polyacidic sequence appends to RAD6 protein as a polyanionic tail and that its function in vivo does not require stoichiometry of length. RAD6 protein was purified to near homogeneity from a yeast strain carrying a RAD6 overproducing plasmid. Approximately the first 150 residues of RAD6 protein composed a structural domain that was resistant to proteinase K and had a Stokes radius typical of a globular protein of its calculated mass. The carboxyl-terminal polyacidic sequence was sensitive to proteinase K, and it endowed RAD6 protein with an aberrantly large Stokes radius that indicates an asymmetric shape. We deduce that RAD6 protein is monomeric and comprises a globular domain with a freely extending polyacidic tail. We tested the phenotypic effects of partial or complete deletion of the polyacidic sequence, demonstrating the presence of the shortened proteins in the cell by using antibody to RAD6 protein. Removal of the entire polyacidic sequence severely reduced sporulation but only slightly affected survival after UV irradiation or UV-induced mutagenesis. Strains with deletions of all but the first 4 or 15 residues of the polyacidic sequence were phenotypically almost wild type or wild type, respectively. We conclude that the intrinsic activity of RAD6 protein resides in the globular domain, that the polyacidic sequence has a stimulatory or modifying role evident primarily in sporulation, and that only a short section apparently functions as effectively as the entire polyacidic sequence.


Sign in / Sign up

Export Citation Format

Share Document