scholarly journals Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters

Archaea ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ayrat M. Ziganshin ◽  
Elvira E. Ziganshina ◽  
Sabine Kleinsteuber ◽  
Marcell Nikolausz

Comparative analysis of methanogenic archaea compositions and dynamics in 11 laboratory-scale continuous stirred tank reactors fed with different agricultural materials (chicken manure, cattle manure, maize straw, maize silage, distillers grains, andJatrophapress cake) was carried out by analysis of the methyl coenzyme-M reductaseα-subunit (mcrA) gene. Various taxa within Methanomicrobiales, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Methanomassiliicoccales were detected in the biogas reactors but in different proportions depending on the substrate type utilized as well as various process parameters. Improved coverage and higher taxonomic resolution of methanogens were obtained compared to a previous 16S rRNA gene based study of the same reactors. Some members of the genusMethanoculleuspositively correlated with the relative methane content, whereas opposite correlations were found forMethanobacterium. Specific biogas production was found to be significantly correlating with Methanosarcinaceae. Statistical analysis also disclosed that some members of the genusMethanoculleuspositively correlated with the ammonia level, whereas the prevalence ofMethanocorpusculum,Methanobacterium, andMethanosaetawas negatively correlated with this parameter. These results suggest that the application of methanogenic archaea adapted to specific feedstock might enhance the anaerobic digestion of such waste materials in full-scale biogas reactors.

2020 ◽  
Vol 2 (7) ◽  
Author(s):  
Siti Aminah Mohd Johari ◽  
Aqsha Aqsha ◽  
Noridah B. Osman ◽  
M. Rashid Shamsudin ◽  
Mariam Ameen ◽  
...  

Acta Naturae ◽  
2012 ◽  
Vol 4 (4) ◽  
pp. 91-97 ◽  
Author(s):  
A. M. Ziganshin ◽  
E. E. Ziganshina ◽  
S. Kleinsteuber ◽  
J. Pröter ◽  
O. N. Ilinskaya

This work is devoted to the investigation of the methanogenic archaea involved in anaerobic digestion of cattle manure and maize straw on the basis of terminal restriction fragment length polymorphism (TRFLP) analysis of archaeal 16S rRNA genes. The biological diversity and dynamics of methanogenic communities leading to anaerobic degradation of agricultural organic wastes with biogas production were evaluated in laboratory-scale digesters. T-RFLP analysis, along with the establishment of archaeal 16S rRNA gene clone libraries, showed that the methanogenic consortium consisted mainly of members of the genera Methanosarcina and Methanoculleus, with a predominance of Methanosarcina spp. throughout the experiment.


Author(s):  
Heru Surianto ◽  
Slamet Raharjo ◽  
Suci Wulandari

The previous experiment was obtained that homemade activator is the best activator to produce biogas by using food waste consist of vegetable, fruit and rice waste.  The current research is carried out by adding chicken manure as a co-activator. Chicken manure content rich in nitrogen can be significantly enhance biogas production. This study is expected to increase the biogas production. There are two processes conducted at the laboratory scale, batch and semi-continuous process. The batch process aim to activate bacteria. The ratio set at food waste/chicken manure, 2 : 1 of digester #1, 3 : 1 of digester #2, 4 : 1 of digester #3 and digester control using food waste only. Stage two aims to produce biogas by adding food waste for 6 days periodically.  The ratio is set at food waste/water, 1 : 2. The highest biogas yielded is digester 2 with a cumulative volume biogas 120.77 liters consist of 71.01% CH4, 26% CO2, 2.9% O2 and 0.088% H2S. The potential of methane gas produced is 0.87 kWh and methane volume per TS and VS at around 18.72 L/kg and 34.68 L/kg, respectively.


mSystems ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
J. A. Frank ◽  
M. Ø. Arntzen ◽  
L. Sun ◽  
L. H. Hagen ◽  
A. C. McHardy ◽  
...  

ABSTRACT The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates. Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1’s metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates.


2021 ◽  
Vol 6 (3) ◽  
pp. 44-46
Author(s):  
Holta Prifti ◽  
Tania Floqi

Biogas production technology not only constitutes a biofuel source, but also can be a mitigation measure for the various environmental pollutants. This technology, i.e., anaerobic digestion is a biological process that takes place naturally when microorganisms break down organic matter in the absence of oxygen. In an enclosed chamber, controlled anaerobic digestion of organic matter produces biogas which is predominantly methane. The produced methane then can be directly used; or after certain conditioning, can be used in onsite power generation, heating homes or as vehicular fuel. Besides, organic waste is increasingly becoming a major problem in every society imposing serious economic and environmental concerns. For this reason, many contemporary researches are emphasizing in finding sustainable solutions to recycle and produce energy from such waste. In this context, this paper aims to investigate the potential of cow and chicken manure, and olive waste for biogas production obtained through the anaerobic digestion process. The substrates were placed in laboratory scale digesters without pretreatment. The retention time in the digesters was 30 days. The samples of the tested substrates were collected and analyzed for pH, total solids, ash, and the content of volatile solids (VS). Under mesophilic conditions, all combinations of cow and chicken manure, and olive waste with sludge by an anaerobic pond of a trickling filter treatment plant, as co-substrate, significantly improved biogas, and methane yields. The experimental results showed that chicken manure (CM) is the most suitable for anaerobic digestion (AD). The next step of the study will consist in implementing a large scale of biogas production plants and we will estimate the national potential of green energy produced by this technology and map the areas that need digesters.


Acta Naturae ◽  
2012 ◽  
Vol 4 (4) ◽  
pp. 78-90 ◽  
Author(s):  
Yu. M. Yevdokimov ◽  
V. I. Salyanov ◽  
E. I. Katz ◽  
S. G. Skuridin

This work is devoted to the investigation of the methanogenic archaea involved in anaerobic digestion of cattle manure and maize straw on the basis of terminal restriction fragment length polymorphism (TRFLP) analysis of archaeal 16S rRNA genes. The biological diversity and dynamics of methanogenic communities leading to anaerobic degradation of agricultural organic wastes with biogas production were evaluated in laboratory-scale digesters. T-RFLP analysis, along with the establishment of archaeal 16S rRNA gene clone libraries, showed that the methanogenic consortium consisted mainly of members of the genera Methanosarcina and Methanoculleus, with a predominance of Methanosarcina spp. throughout the experiment.


Author(s):  
E. Fernández-Palacios ◽  
Xudong Zhou ◽  
Mabel Mora ◽  
David Gabriel

In this study, the long-term performance and microbial dynamics of an Upflow Anaerobic Sludge Blanket (UASB) reactor targeting sulfate reduction in a SOx emissions treatment system were assessed using crude glycerol as organic carbon source and electron donor under constant S and C loading rates. The reactor was inoculated with granular sludge obtained from a pulp and paper industry and fed at a constant inlet sulfate concentration of 250 mg S-SO42−L−1 and a constant C/S ratio of 1.5 ± 0.3 g Cg−1 S for over 500 days. Apart from the regular analysis of chemical species, Illumina analyses of the 16S rRNA gene were used to study the dynamics of the bacterial community along with the whole operation. The reactor was sampled along the operation to monitor its diversity and the changes in targeted species to gain insight into the performance of the sulfidogenic UASB. Moreover, studies on the stratification of the sludge bed were performed by sampling at different reactor heights. Shifts in the UASB performance correlated well with the main shifts in microbial communities of interest. A progressive loss of the methanogenic capacity towards a fully sulfidogenic UASB was explained by a progressive wash-out of methanogenic Archaea, which were outcompeted by sulfate-reducing bacteria. Desulfovibrio was found as the main sulfate-reducing genus in the reactor along time. A progressive reduction in the sulfidogenic capacity of the UASB was found in the long run due to the accumulation of a slime-like substance in the UASB.


2007 ◽  
Vol 73 (14) ◽  
pp. 4609-4618 ◽  
Author(s):  
Samuel Ohene-Adjei ◽  
Ronald M. Teather ◽  
Michael Ivan ◽  
Robert J. Forster

ABSTRACT Association patterns between archaea and rumen protozoa were evaluated by analyzing archaeal 16S rRNA gene clone libraries from ovine rumen inoculated with different protozoa. Five protozoan inoculation treatments, fauna free (negative control), holotrich and cellulolytic protozoa, Isotricha and Dasytricha spp., Entodinium spp., and total fauna (type A) were tested. We used denaturing gradient gel electrophoresis, quantitative PCR, and phylogenetic analysis to evaluate the impact of the protozoan inoculants on the respective archaeal communities. Protozoan 18S ribosomal DNA clone libraries were also evaluated to monitor the protozoal population that was established by the inoculation. Phylogenetic analysis suggested that archaeal clones associated with the fauna-free, the Entodinium, and the type A inoculations clustered primarily with uncultured phylotypes. Polyplastron multivesiculatum was the predominant protozoan strain established by the holotrich and cellulolytic protozoan treatment, and this resulted predominantly in archaeal clones affiliated with uncultured and cultured methanogenic phylotypes (Methanosphaera stadtmanae, Methanobrevibacter ruminantium, and Methanobacterium bryantii). Furthermore, the Isotricha and Dasytricha inoculation treatment resulted primarily in archaeal clones affiliated with Methanobrevibacter smithii. This report provides the first assessment of the influence of protozoa on archaea within the rumen microbial community and provides evidence to suggest that different archaeal phylotypes associate with specific groups of protozoa. The observed patterns may be linked to the evolution of commensal and symbiotic relationships between archaea and protozoa in the ovine rumen environment. This report further underscores the prevalence and potential importance of a rather large group of uncultivated archaea in the ovine rumen, probably unrelated to known methanogens and undocumented in the bovine rumen.


2013 ◽  
Vol 295-298 ◽  
pp. 1735-1739
Author(s):  
Fu Bin Yin ◽  
Zi Fu Li ◽  
Shuang Hou ◽  
Xiao Feng Bai ◽  
Ting Ting Wang

The main objectives of this research were to determine the effect of leachate refluence on biogas production for dry mesophilic co-fermentation of chicken manure and corn straw. The biogas production, the ratio of biogas production, methane content and pH were analyzed. The results showed that the leachate refluence has a significant impact on biogas production of dry co-fermentation. The cumulative biogas yield of the once in 48h has an increase by 10% and 5% for no reflux and once in 24h, respectively. The leachate refluence has little influence on the methane content, but it has good effect to keep pH in the optimum rang.


Sign in / Sign up

Export Citation Format

Share Document