ash melting
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 49)

H-INDEX

21
(FIVE YEARS 5)

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123051
Author(s):  
Siim Link ◽  
Patrik Yrjas ◽  
Daniel Lindberg ◽  
Andres Trikkel ◽  
Valdek Mikli

ACS Omega ◽  
2022 ◽  
Author(s):  
Siim Link ◽  
Patrik Yrjas ◽  
Daniel Lindberg ◽  
Andres Trikkel
Keyword(s):  

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1282
Author(s):  
Veronika Chaloupková ◽  
Tatiana Ivanova ◽  
Petr Hutla ◽  
Monika Špunarová

Rice straw is potentially an appropriate feedstock material for biofuel production, since a huge amount of this postharvest residue is generated every year. The transformation of such agricultural biomass into densified products with a higher energy value and their subsequent combustion is associated with several questions. One of them is that rice straw exhibits a large formation of ash during combustion; thus, it is essential to know the nature of its ash melting behavior. Generally, during the combustion of straw biomass, ash sintering occurs in relatively low temperatures, resulting in the damaging of heating equipment. This negative aspect can be overcome by the addition of calcium-based additives. This paper aimed to study the ash melting behavior at a laboratory scale and to determine the ash melting points of rice straw mixed with calcium carbonate (CaCO3) and calcium hydroxide (Ca(OH)2) in different proportional ratios. The standardly produced ash samples from the rice straw obtained from Cambodia were constantly heated up in a muffle furnace, and characteristic temperatures of ash melting, i.e., shrinkage, deformation, hemisphere, and flow temperature, were recorded. The results showed that increasing the additive ratio did not bring linear growth of the melting temperatures. The addition of 1% CaCO3 showed an optimal positive impact of higher ash melting temperatures, and thus a better ability to abate the sintering of the rice straw ash.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6380
Author(s):  
Živilė Černiauskienė ◽  
Algirdas Jonas Raila ◽  
Egidijus Zvicevičius ◽  
Vita Tilvikienė ◽  
Zofija Jankauskienė

In the world, as in Lithuania, there is a costant search for new crops suitable for energy conversion. The coarse-energy crops and their biomass studied for this paper were assessed in a comprehensive manner, i.e., not only their calorific value and ash content but also their ash melting properties and pollutants emitted during the thermochemical conversion. The calorific value of energy crops varies from 17.92 ± 0.32 to 18.50 ± 0.66 MJ kg−1 and decreases in the following order: A. dubia > M. giganteus > C. sativa. Ash content varies from 1.51 ± 0.03 to 3.36 ± 0.23% and decreases in the following order: C. sativa > A. dubia > M. giganteus. The lowest primary ash deformation (648 ± 8 °C) was recorded for C. sativa. Taking into account the specificity of our research and the changes in biomass ash content due to mineral nitrogen fertilization, it has been found that that higher levels of nitrogen fertilizers in the combustion products reduce CO and increase the total CO2 content of the combustion product. Significant changes in fertilization were usually 170 kg ha−1 for A. dubia and 90 kg ha−1 for M. giganteus. In summary, A. dubia, M. giganteus and C. sativa biomass should be used for thermochemical conversion.


2021 ◽  
Vol 03 (04) ◽  
pp. 1-1
Author(s):  
Despina Vamvuka ◽  
◽  
Maria Deli ◽  
Antonios Stratakis ◽  
◽  
...  

In this work, the ash fusibility behaviour of selected agricultural residues and their blends with lignite was studied, by carrying out chemical, mineralogical, fusibility and thermogravimetric analyses and calculating slagging/fouling indicators for predicting deposition tendencies in boilers. Two additives, bauxite, and clinochlore, were used at varying amounts to reduce ash melting, followed by examining their anti-fusion mechanisms. Initial deformation and softening temperatures of biomass materials were low for combustion processes operating above 900 °C due to their high concentration in K, Na, and P compounds. When the additives were mixed with raw fuels or lignite/biomass blends, the initial deformation of ashes started at temperatures up to 340 °C higher, whereas the fluid temperature in most cases exceeded 1500 °C. Bauxite was more effective than clinochlore. The positive impact of additives was attributed to the mineralogical transformations during ashing to phases with a high melting point through reactions with K, Na-bearing minerals, or CaO of fuel ashes.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yifan Chai ◽  
Yingjie Fan ◽  
Jiayi Wu ◽  
Yunhao Zhang ◽  
Guoping Luo ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6737-6749
Author(s):  
Juraj Trnka ◽  
Michal Holubčík ◽  
Nikola Čajová Kantová ◽  
Jozef Jandačka

Alternative biomass makes up a considerable portion of the waste from biomass processing in forestry and agriculture. The aim of this work was to create pellets from several sources of alternative biomass, e.g., lawn clippings, corn husks, linden leaves, and pine needles, which were compared to pure wood pellets. Analysis of the fuel properties focused on their chemical composition, thermogravimetric analysis, calorific values, and ash melting temperatures. The power and emission parameters of the fuels were determined via an automatic pellet boiler. The primary issues in the combustion of the alternative biomass types were low calorific values, increased emissions, high ash contents, and low ash melting temperatures. The two primary options for solving these problems are the production of fuel mixtures with wood or the use of new combustion technologies. This work also dealt with the combustion of alternative biomass via a rotary burner. The results showed an increase in the ash content of the alternative biomass, which also led to the burner occasionally going out due to clogging with the accumulation of ash and sintering. Based on the results, only pellets from pine needles and corn husks can be recommended for further use.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3041
Author(s):  
Gregor Sailer ◽  
Victoria Knappe ◽  
Jens Poetsch ◽  
Sebastian Paczkowski ◽  
Stefan Pelz ◽  
...  

In comparison to lignocellulosic biomass, which is suitable for thermo-chemical valorization, the organic fraction of municipal solid waste (OFMSW) is mainly treated via composting or anaerobic digestion (AD). An efficient utilization of OFMSW is difficult due to variations in its composition. Based on the characteristics of OFMSW, hydrothermal treatment (HTT) experiments at temperatures < 200 °C as an alternative OFMSW-processing were evaluated in this study. The raw OFMSW was characterized with a dry matter (DM)-based organic dry matter (oDM) content of 77.88 ± 1.37 %DM and a higher heating value (HHV) of 15,417 ± 1258 J/gDM. Through HTT at 150, 170 and 185 °C, the oDM contents as well as H/C and O/C ratios were lowered while the HHV increased up to 16,716 ± 257 J/gDM. HTT led to improved fuel properties concerning ash melting, corrosion stress and emission behavior. Negative consequences of the HTT process were higher contents of ash in the biochar as well as accumulated heavy metals. In the sense of a bioeconomy, it could be beneficial to first convert raw OFMSW into CH4 through AD followed by HTT of the AD-digestate for the generation of solid fuels and liquid products. This could increase the overall utilization efficiency of OFMSW.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2774
Author(s):  
Margareta Novian Cahyanti ◽  
Tharaka Rama Krishna C. Doddapaneni ◽  
Marten Madissoo ◽  
Linnar Pärn ◽  
Indrek Virro ◽  
...  

Abundant biomass is a potential energy source. However, it possesses several challenges when considered for energy applications. Torrefaction, a thermal pretreatment process can improve the properties of biomass as energy source. This study focused on comparing effect of torrefaction operating parameters on agricultural and wood wastes properties as fuel. The physiochemical properties, composition, moisture-biomass interaction and ash melting behavior were determined. The result show that higher torrefaction temperature and longer residence time increased lignin content, reduced hemicellulose and cellulose content. The moisture uptake of torrefied biomass was reduced in the range 2.47–9.94% compared with raw biomass depending on torrefaction temperature that indicate torrefied biomass was more hydrophobic than raw biomass. The moisture adsorption isotherm curve shows type II isotherm based on the Brunauer-Emmett-Teller’s (BET) classification and was best described by the Oswin model. In addition, torrefaction treatment showed significant influence on the melting behavior of the biomass ash. Especially for agricultural wastes, the fouling tendency shifted from serious range to low range with torrefaction treatment. Torrefaction showed promise for improving fuel characteristics of the studied biomass.


Sign in / Sign up

Export Citation Format

Share Document