scholarly journals High Yielding Microbubble Production Method

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Joe Fiabane ◽  
Paul Prentice ◽  
Ketan Pancholi

Microfluidic approaches to microbubble production are generally disadvantaged by low yield and high susceptibility to (micro)channel blockages. This paper presents an alternative method of producing microbubbles of 2.6 μm mean diameter at concentrations in excess of 30 × 106 mL−1. In this method, the nitrogen gas flowing inside the liquid jet is disintegrated into spray of microbubble when air surrounding this coflowing nitrogen gas-liquid jet passes through a 100 μm orifice at high velocity. Resulting microbubble foam has the polydispersity index of 16%. Moreover, a ratio of mean microbubble diameter to channel width ratio was found to be less than 0.025, which substantially alleviates the occurrence of blockages during production.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramin Zakeri

AbstractOne of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle. In this research, inspired by nature, a model is presented consisting of DPD (dissipative particle dynamics) particles driven by electro-osmotic flow (EOF) in micro channel that a thin movable impermeable polymer membrane has been attached across channel width, thus momentum of fluid can directly transfer to myosin stem. At the first, by validation of electro-osmotic flow in micro channel in different conditions with accuracy of less than 10 percentage error compared to analytical results, the DPD results have been developed to displacement of an impermeable polymer membrane in EOF. It has been shown that by the presence of electric field of 250 V/m and Zeta potential − 25 mV and the dimensionless ratio of the channel width to the thickness of the electric double layer or kH = 8, about 15% displacement in 8 s time will be obtained compared to channel width. The influential parameters on the displacement of the polymer membrane from DPD particles in EOF such as changes in electric field, ion concentration, zeta potential effect, polymer material and the amount of membrane elasticity have been investigated which in each cases, the radius of gyration and auto correlation velocity of different polymer membrane cases have been compared together. This simulation method in addition of probably helping understand natural myosin displacement mechanism, can be extended to design the contraction of an artificial muscle tissue close to nature.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3005 ◽  
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zhenwei Yan ◽  
Zhaojun Tan

In this research, the effects of the compaction velocity on the sinterability of the Al–Fe–Cr–Ti powder metallurgy (PM) alloy by high velocity compaction were investigated. The Al–Fe–Cr–Ti alloy powder was compacted with different velocities by high velocity compaction and then sintered under a flow of high pure (99.999 wt%) nitrogen gas. Results indicated that both the sintered density and mechanical properties increased with increasing compaction velocity. By increasing the compaction velocity, the shrinkage of the sintered samples decreased. A maximum sintered density of 2.85 gcm−3 (relative density is 98%) was obtained when the compaction velocity was 9.4 ms−1. The radial and axial shrinkage were controlled to less than 1% at a compaction velocity of 9.4 ms−1. At a compaction velocity of 9.4 ms−1, sintered compacts with an ultimate tensile strength of 222 MPa and a yield strength of 160 MPa were achieved. The maximum elongation was observed to be 2.6%. The enhanced tensile properties of the Al–Fe–Cr–Ti alloy were mainly due to particle boundary strengthening.


1999 ◽  
Vol 35 (3) ◽  
pp. 267-279 ◽  
Author(s):  
Paul B. Parks ◽  
Marshall N. Rosenbluth ◽  
Sergei V. Putvinski ◽  
Todd E. Evans

2006 ◽  
Author(s):  
Bochuan Lin ◽  
Heng Ban

The effect of electrical double layer (EDL) on micro-channel flow has been studied widely. Most research focused on flows with typical channel width or pipe diameter much greater than the thickness of EDL (Debye length). In such cases, the influence of EDL on the overall electrical conductivity is small, and a constant bulk electrical conductivity is often used in calculations. In our study of pressure-driven micropipette injection flow, the pipe size is on the same order of magnitude as the Debye length. To elucidate the effect of overlapping EDL the flow inside a micro-channel was analyzed. The governing equations for the flow, the Poisson equation for the electric potential, and the charge continuity equation for the net charge were solved analytically. The effect of overlapping EDL on the electrical conductivity and velocity distribution in the micro-channel and the pressure drop were quantified. The results showed that, the average conductivity of electrolyte solution inside the channel increased significantly, dependent on the channel width. With the modified mean electrical conductivity, the pressure drop for the pressure-driven flow was smaller than that without considering the influence of EDL on conductivity.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1344
Author(s):  
Aliasghar Azma ◽  
Yongxiang Zhang

Channel confluences happen commonly in water transport networks and natural rivers. Utilizing a 3D CFD code, a series of numerical simulations were performed using a large eddy simulation turbulence model to investigate the effect of the variations in tributary channel width and the transverse geometrical shape of the main channel on the flow parameters and vertical structure in a T-shape confluence. The code was calibrated using the experimental data from the literature. Flow parameters were considered in ratios of tributary width to the main channel width in trapezoidal and rectangular channels. Results indicate that decreasing the width ratio of the tributary channel to the main channel significantly affects the flow structure in the confluence. Generally, it increases the width and length of the main recirculation zone. It also increases the maximum velocity near the bed, especially in cases with a trapezoidal shape. Besides, it highly affects the structure and formation of the recirculation zone in trapezoidal channels.


2018 ◽  
Vol 32 (27) ◽  
pp. 1850301 ◽  
Author(s):  
Jiajia Xu ◽  
Xueye Chen ◽  
Yanlin Liu ◽  
Zhen Yao

In this paper, we have designed a rhombic microchannel plane micromixer (RMPM). The RMPM uses the principle of converging and diverging to improve the mixing efficiency. We improved the mixing efficiency by changing the rhombic angles and the rhombic channel width ratios. The influence of geometric parameters on mixing efficiency is analyzed by control of the variable method. Through the analysis of the numerical simulation, the RMPM can help increase the chaotic convection between different concentrations of fluids. The results of the study show that the rhombic angle and the width ratio of a microchannel can have a considerable effect on the mixing efficiency. The micromixer can be potentially useful in the future applications of rapid and high throughput mixing.


Author(s):  
Jin-yuan Qian ◽  
Xiao-juan Li ◽  
Zan Wu ◽  
Zhi-jiang Jin ◽  
Junhui Zhang ◽  
...  

Slug flow is a common flow pattern in the liquid–liquid two-phase flow in microchannels. It is an ideal pattern for mass transfer enhancement. Many factors influence the slug formation such as the channel geometries (channel widths, channel depth), flow rates of the two phase, and physical properties. In this paper, in order to investigate the liquid–liquid two-phase slug formation in a T-junction microchannel quantitatively, the volume of fluid (VOF) method is adopted to simulate the whole slug formation process. With the validated model, the effects of the disperse phase channel width, channel depth, and two-phase flow rate ratio on slug formation frequency and slug size (slug volume and slug length) are analyzed with dimensionless parameters. Dimensionless parameters include the disperse-to-continuous phase channel width ratio, height-to-width ratio, and two-phase flow rate ratio. Results show that both the channel geometry and two-phase flow rate ratio have a significant influence on slug formation. Compared with the conventional slug formation stages, a new stage called the lag stage emerges when the disperse phase channel width decreases to half of the continuous phase channel width. When the channel depth decreases to one third of the continuous phase channel width, the flow patterns become unstable and vary with the two-phase flow rate ratio. Moreover, empirical correlations are proposed to predict the slug formation frequency. The correlation between slug formation frequency and slug volume is quantified.


1998 ◽  
Vol 10 (11) ◽  
pp. 2922-2931 ◽  
Author(s):  
G. Artana ◽  
H. Romat ◽  
G. Touchard

Sign in / Sign up

Export Citation Format

Share Document