scholarly journals Effect of TiO2Rutile Additive on Electrical Properties of PPy/TiO2Nanocomposite

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Trong Tung Nguyen ◽  
Ngoc Huyen Duong

Polypyrrole/titanium dioxide nanocomposite (PPy/TiO2) was synthesized byin situchemical polymerization of pyrrole (Py) monomer in colloidal suspension of TiO2rutile. TEM and SEM images show that the TiO2is covered by PPy forming a core-shell structure. The PPy/TiO2core-shell will createn-pjunction and bring in an inversion layer on the PPy-shell surface. The feature is accounted for the modification in electrical properties of the PPy/TiO2nanocomposite. On the exposure to oxygen the conductivity of the nanocomposite exhibits an increase in 16–18-folds that are accounted for the interaction between oxygen (an electron acceptor) and the inversion layer. The cyclic voltammetry diagrams have shown that at around 15% TiO2and scan rate 100 mV/s the nanocomposites can reach a specific capacitance about 176 F/g.

2018 ◽  
Vol 28 (1) ◽  
pp. 87
Author(s):  
Huyen Ngoc Duong ◽  
Thanh-Phuong Nguyen ◽  
Tung Trong Nguyen

Polypyrrole/titanium dioxide nanocomposite (PPy/TiO2) was synthesized by in-situ chemical polymerization of pyrrole (Py) monomer in colloidal suspension of TiO2 anatase. TEM images show that TiO2 anatase nanoparticles with size of around 3–4 nm are randomly imbedded on the surface and inside of PPy grain. The random distribution of TiO2 anatase nanoparticle in PPy matrix form variety of p-n contact on the surface and inside of the materials. As expectation, the charge exchange between oxygen and the PPy affect the p-n depletion regions and then modify the electrical properties of PPy. Upon exposure to the open air the conductivity of the PPy/TiO2 nanocomposite exhibits an increase of about 20 folds much larger than that of neat PPy. The enhancement is accounted for the modification of in the surface conductance of PPy/TiO2 nanocomposite as a combination of the TiO2 coupling and oxygen interaction.


2018 ◽  
Vol 6 (21) ◽  
pp. 5707-5715 ◽  
Author(s):  
Fei Hu ◽  
Jianlong Xu ◽  
Sihang Zhang ◽  
Jie Jiang ◽  
Bin Yan ◽  
...  

Novel halloysite/polyaniline core/shell structure nanocomposites with remarkable electrochromic performances are fabricated by in situ chemical polymerization for electrochromic applications.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1201
Author(s):  
Xinghua Ji ◽  
Cheng Zhang ◽  
Shufeng Li

SiCp reinforced aluminium matrix composites (AMCs), which are widely used in the aerospace, automotive, and electronic packaging fields along with others, are usually prepared by ex situ techniques. However, interfacial contamination and poor wettability of the ex situ techniques make further improvement in their comprehensive performance difficult. In this paper, SiCp reinforced AMCs with theoretical volume fractions of 15, 20, and 30% are prepared by powder metallurgy and in situ reaction via an Al-Si-C system. Moreover, a combined method of external addition and an in situ method is used to investigate the synergistic effect of ex situ and in situ SiCp on AMCs. SiC particles can be formed by an indirect reaction: 4Al + 3C → Al4C3 and Al4C3 + 3Si → 3SiC + 4Al. This reaction is mainly through the diffusion of Si, in which Si diffuses around Al4C3 and then reacts with Al4C3 to form SiCp. The in situ SiC particles have a smooth boundary, and the particle size is approximately 1–3 μm. A core-shell structure having good bonding with an aluminium matrix was generated, which consists of an ex situ SiC core and an in situ SiC shell with a thickness of 1–5 μm. The yield strength and ultimate tensile strength of in situ SiCp reinforced AMCs can be significantly increased with a constant ductility by adding 5% ex situ SiCp for Al-28Si-7C. The graphite particle size has a significant effect on the properties of the alloy. A criterion to determine whether Al4C3 is a complete reaction is achieved, and the forming mechanism of the core-shell structure is analysed.


2018 ◽  
Vol 25 (02) ◽  
pp. 1850052 ◽  
Author(s):  
GAO PINGPING ◽  
OUYANG CHUN ◽  
XIE ZHIYONG ◽  
TAO TAO

The Ni-P/TiN coating was used as bipolar plate by electroless plating on Ti. Surface morphology and phase structure of the coatings were characterized by SEM and XRD, respectively. Corrosion resistance of Ni-P and Ni-P/TiN coating was measured in the simulated solution of Proton exchange membrane fuel cells (PEMFCs). The interfacial contact resistance (ICR) was conducted by applied different forces. SEM images indicated that the particles of core–shell structure were formed on the surface of coating on Ti substrate. The core–shell structure was composed of TiN core and Ni-P electroless plating shell. Compared with Ni-P coatings, the Ni-P/TiN coating showed better corrosion resistance behaviors and low ICR (below 10[Formula: see text]m[Formula: see text][Formula: see text] cm[Formula: see text] under pressure of 200 N/cm[Formula: see text]. TiN particles and distribution of core–shell were in favor of the formation of coating and compact surface morphology. The good conductivity was attributed to the compact surface morphology of coating. The Ni-P/TiN coating showed excellent interfacial conductivity and good corrosion resistance at applied high potential in simulated solution of PEMFCs.


2011 ◽  
Vol 71-78 ◽  
pp. 928-931
Author(s):  
Jin Liang Wu ◽  
Yong Xing Zhang ◽  
Chun Sun Zhang

Nowadays, there are dominantly two ways of producing modified emulsified asphalt ,one of which is to emulsify modified asphalt, the other to modify asphalt emulsion. But they have the same defect that modifier cannot be evenly mixed with asphalt emulsion, which has side effect on the performance of modified emulsified asphalt. The emulsified asphalt and modifier have different traits in structure and property. In order to make the modifier disperse in asphalt emulsion evenly to improve the performance of modified emulsified asphalt, a tentative idea is brought forward: we shall utilize in-situ polymerization and core-shell structure to enhance feature of emulsified asphalt. Core-shell structure is a method of synthesizing composite material, which can assist to achieve sound effect of the two kinds of materials. The point to emphasize is, in this paper, the introduction and feasibility of the method, its specialty against current mainly methods, the difficulties encountered in practice as well as its promising prospect and the anticipated target to achieve will all be illustrated.


2019 ◽  
Vol 35 (14) ◽  
pp. 1727-1734
Author(s):  
Lisheng Zhong ◽  
Haiqiang Bai ◽  
Junzhe Wei ◽  
Jianlei Zhu ◽  
Jianhong Peng ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 98904-98909 ◽  
Author(s):  
Jiangru Zhang ◽  
Guicun Qi ◽  
Xiang Wang ◽  
Binghai Li ◽  
Zhihai Song ◽  
...  

For the first time, an ultrafine conductive particle with core–shell structure, acrylonitrile-butadiene elastomeric nanoparticle (NBR-ENP) coated with polypyrrole (PPy), was prepared by in situ oxidative polymerization.


RSC Advances ◽  
2016 ◽  
Vol 6 (57) ◽  
pp. 51900-51907 ◽  
Author(s):  
Kai Wu ◽  
Linyu Wu ◽  
Weixing Yang ◽  
Songgang Chai ◽  
Feng Chen ◽  
...  

The core–shell structure of surface conductive SiO2@rGO could result in enhanced electrical conductivity and EMI shielding effectiveness as due to both synergistic effect and volume exclusion effect.


Sign in / Sign up

Export Citation Format

Share Document