scholarly journals Dark Spinors Hawking Radiation in String Theory Black Holes

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
R. T. Cavalcanti ◽  
Roldão da Rocha

The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, which are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Upalaparna Banerjee ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman ◽  
Michael Spannowsky

Abstract It is not only conceivable but likely that the spectrum of physics beyond the Standard Model (SM) is non-degenerate. The lightest non-SM particle may reside close enough to the electroweak scale that it can be kinematically probed at high-energy experiments and on account of this, it must be included as an infrared (IR) degree of freedom (DOF) along with the SM ones. The rest of the non-SM particles are heavy enough to be directly experimentally inaccessible and can be integrated out. Now, to capture the effects of the complete theory, one must take into account the higher dimensional operators constituted of the SM DOFs and the minimal extension. This construction, BSMEFT, is in the same spirit as SMEFT but now with extra IR DOFs. Constructing a BSMEFT is in general the first step after establishing experimental evidence for a new particle. We have investigated three different scenarios where the SM is extended by additional (i) uncolored, (ii) colored particles, and (iii) abelian gauge symmetries. For each such scenario, we have included the most-anticipated and phenomenologically motivated models to demonstrate the concept of BSMEFT. In this paper, we have provided the full EFT Lagrangian for each such model up to mass dimension 6. We have also identified the CP, baryon (B), and lepton (L) number violating effective operators.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Takumi Hayashi ◽  
Kohei Kamada ◽  
Naritaka Oshita ◽  
Jun’ichi Yokoyama

Abstract False vacuum decay is a key feature in quantum field theories and exhibits a distinct signature in the early Universe cosmology. It has recently been suggested that the false vacuum decay is catalyzed by a black hole (BH), which might cause the catastrophe of the Standard Model Higgs vacuum if primordial BHs are formed in the early Universe. We investigate vacuum phase transition of a scalar field around a radiating BH with taking into account the effect of Hawking radiation. We find that the vacuum decay rate slightly decreases in the presence of the thermal effect since the scalar potential is stabilized near the horizon. However, the stabilization effect becomes weak at the points sufficiently far from the horizon. Consequently, we find that the decay rate is not significantly changed unless the effective coupling constant of the scalar field to the radiation is extremely large. This implies that the change of the potential from the Hawking radiation does not help prevent the Standard Model Higgs vacuum decay catalyzed by a BH.


2021 ◽  
Vol 2021 (12) ◽  
pp. 047
Author(s):  
Felipe F. Freitas ◽  
Carlos A.R. Herdeiro ◽  
António P. Morais ◽  
António Onofre ◽  
Roman Pasechnik ◽  
...  

Abstract We construct families, and concrete examples, of simple extensions of the Standard Model that can yield ultralight real or complex vectors or scalars with potential astrophysical relevance. Specifically, the mass range for these putative fundamental bosons (∼ 10-10-10-20 eV) would lead dynamically to both new non-black hole compact objects (bosonic stars) and new non-Kerr black holes, with masses of ∼ M⊙ to ∼ 1010 M⊙, corresponding to the mass range of astrophysical black hole candidates (from stellar mass to supermassive). For each model, we study the properties of the mass spectrum and interactions after spontaneous symmetry breaking, discuss its theoretical viability and caveats, as well as some of its potential and most relevant phenomenological implications linking them to the physics of compact objects.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yang Bai ◽  
Mrunal Korwar

Abstract Spherically symmetric magnetic and dyonic black holes with a magnetic charge Q = 2 are studied in the Standard Model and general relativity. A magnetically charged black hole with mass below 9.3 × 1035 GeV has a “hairy” cloud of electroweak gauge and Higgs fields outside the event horizon with 1/mW in size. An extremal magnetic black hole has a hair mass of 3.6 TeV, while an extremal dyonic black hole has an additional mass of q2 × 1.6 GeV for a small electric charge q ≪ 2π/e2. A hairy dyonic black hole with an integer charge is not stable and can decay into a magnetic one plus charged fermions. On the other hand, a hairy magnetic black hole can evolve via Hawking radiation into a nearly extremal one that is cosmologically stable and an interesting object to be searched for.


2004 ◽  
Vol 19 (02) ◽  
pp. 143-149 ◽  
Author(s):  
B. F. L. WARD

We use exact results in a new approach to quantum gravity to study the effect of quantum loop corrections on the behavior of the metric of spacetime near the Schwarzschild radius of a massive point particle in the standard model. We show that the classical conclusion that such a system is a black hole is obviated. Phenomenological implications are discussed.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
M. Gonzalez-Lopez ◽  
M. J. Herrero ◽  
P. Martinez-Suarez

AbstractIn the present work we study the implications at the future $$e^+e^-$$ e + e - colliders of the modified interaction vertices WWH, WWHH, HHH and HHHH within the context of the non-linear effective field theory given by the Electroweak Chiral Lagrangian. These vertices are given by four parameters, a, b, $$\kappa _3$$ κ 3 and $$\kappa _4$$ κ 4 , respectively, that are independent and without any constraint from symmetry considerations in this non-linear effective Lagrangian context, given the fact the Higgs field is a singlet. This is in contrast to the Standard Model, where the vertices are related by $$V_{WWH}^\mathrm{SM}=v V_{WWHH}^\mathrm{SM}$$ V WWH SM = v V WWHH SM and $$V_{HHH}^\mathrm{SM}=v V_{HHHH}^\mathrm{SM}$$ V HHH SM = v V HHHH SM , with $$v=246$$ v = 246 GeV. We investigate the implications of the absence of these relations in the Electroweak Chiral Lagrangian case. We explore the sensitivity to these Higgs anomalous couplings in the two main channels at these colliders: double and triple Higgs production (plus neutrinos). Concretely, we study the access to a and b in $$e^+e^- \rightarrow HH \nu {\bar{\nu }}$$ e + e - → H H ν ν ¯ and the access to $$\kappa _3$$ κ 3 and $$\kappa _4$$ κ 4 in $$e^+e^- \rightarrow HHH \nu {\bar{\nu }}$$ e + e - → H H H ν ν ¯ . Our study of the beyond the Standard Model couplings via triple Higgs boson production at $$e^+e^-$$ e + e - colliders is novel and shows for the first time the possible accessibility to the quartic Higgs self-coupling.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Alexandre Arbey ◽  
Jérémy Auffinger

AbstractWe present the new version of the public code designed to compute the Hawking radiation of black holes, with both primary and hadronized spectra. This new version aims at opening an avenue toward physics beyond the Standard Model (BSM) in Hawking radiation. Several major additions have been made since version : dark matter/dark radiation emission, spin 3/2 greybody factors, scripts for cosmological studies, BSM black hole metrics with their associated greybody factors and a careful treatment of the low energy showering of secondary particles; as well as bug corrections. We present, in each case, examples of the new capabilities of .


2014 ◽  
Vol 29 (38) ◽  
pp. 1450204 ◽  
Author(s):  
Xavier Calmet

In this paper, we consider general relativity in the large N limit, where N stands for the number of particles in the model. Studying the resummed graviton propagator in the linearized regime, we propose to interpret its complex poles as black hole precursors. Our main result is the calculation of the mass and width of the lightest of black holes. We show that the values of the masses of black hole precursors depend on the number of fields in the theory. Their masses can be lowered down to the TeV region by increasing the number of fields in a hidden sector that only interacts gravitationally with the Standard Model.


Sign in / Sign up

Export Citation Format

Share Document