scholarly journals Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System

2016 ◽  
Vol 2016 ◽  
pp. 1-18
Author(s):  
Bangji Zhang ◽  
Jie Zhang ◽  
Jinhua Yi ◽  
Nong Zhang ◽  
Qiutan Jin

A novel kinetic dynamic suspension (KDS) system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.

Author(s):  
D A Crolla ◽  
D N L Horton ◽  
R H Pitcher ◽  
J A Lines

After a review of recent developments in active suspension systems, a semi-active system fitted to an off-road vehicle is described. Theoretically predicted results are presented alongside data measured on the actual vehicle. The benefits of the semi-active system over a passive suspension are improved ride comfort and improved body attitude control.


Author(s):  
Wu Yang ◽  
Zhang Nong ◽  
Zhang Bangji ◽  
Zhang Jie

This paper presents a kinetic dynamic suspension (KDS) system to achieve enhanced cooperative control of the roll and warp motion modes for on-road and off-road sports utility vehicles (SUV). The proposed KDS system consists of two hydraulic circuits acting on two pairs of torsional rods and levers, which can be treated as novel anti-roll bars. Hence, these anti-roll bars do not work independently, but are coupled to merely respond to particular motion modes. To verify the handling and ride performance of the system, a 14-DOF model of a SUV and a “magic formula” tire model are developed. The dynamic responses of the vehicle model with KDS suspension are obtained through half-sine bump, asynchronous sine road, and fishhook maneuver simulations. The responses of the KDS equipped vehicle are compared to those of one with anti-roll bars to demonstrate its improved performance and also illustrate the side-effects. The results show that the KDS system considerably improves the vehicle’s anti-roll ability. Furthermore, the vehicle’s warp stiffness is significantly reduced by the KDS system, which enhances the vertical load distribution of each wheel when driving off-road.


2011 ◽  
Vol 131 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Yoshihiro Nakata ◽  
Hiroshi Ishiguro ◽  
Katsuhiro Hirata

2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


2007 ◽  
Vol 345-346 ◽  
pp. 845-848
Author(s):  
Joo Yong Cho ◽  
Han Suk Go ◽  
Usik Lee

In this paper, a fast Fourier transforms (FFT)-based spectral analysis method (SAM) is proposed for the dynamic analysis of spectral element models subjected to the non-zero initial conditions. To evaluate the proposed SAM, the spectral element model for the simply supported Bernoulli-Euler beam is considered as an example problem. The accuracy of the proposed SAM is evaluated by comparing the dynamic responses obtained by SAM with the exact analytical solutions.


2011 ◽  
Vol 199-200 ◽  
pp. 251-256
Author(s):  
Kai An Yu ◽  
Ke Yu Chen

Based on requirements of pipe transport systems on deepwater pipelaying vessel, a new pipe lifting mechanism was designed. It was composed of crank-rocker and rocker-slider mechanism with good lifting capacity and high efficiency. When the slider went to the upper limit position, the mechanism could approximatively dwell, meeting the requirement for transverse conveyor operation. According to the theory of dynamics, numerical analysis method was used to the dynamic analysis of the mechanism. The results showed the maximum counterforce was at the joint between the rocker and ground, and this calculation could be a guideline for the kinematic pair structure designing.


Author(s):  
Apiwat Reungwetwattana ◽  
Shigeki Toyama

Abstract This paper presents an efficient extension of Rosenthal’s order-n algorithm for multibody systems containing closed loops. Closed topological loops are handled by cut joint technique. Violation of the kinematic constraint equations of cut joints is corrected by Baumgarte’s constraint violation stabilization method. A reliable approach for selecting the parameters used in the constraint stabilization method is proposed. Dynamic analysis of a slider crank mechanism is carried out to demonstrate efficiency of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Helu Yu ◽  
Bin Wang ◽  
Yongle Li ◽  
Yankun Zhang ◽  
Wei Zhang

In order to cover the complexity of coding and extend the generality on the road vehicle-bridge iteration, a process to solve vehicle-bridge interaction considering varied vehicle speed based on a convenient combination of Matlab Simulink and ANSYS is presented. In this way, the road vehicle is modeled in state space and the corresponding motion equations are solved using Simulink. The finite element model for the bridge is established and solved using ANSYS. The so-called inter-history iteration method is adopted to realize the interaction between the vehicle model and the bridge model. Different from typical method of road vehicle-bridge interaction in the vertical direction, a detailed longitudinal force model is set up to take into account the effects of varied vehicle speed. In the force model, acceleration and braking of the road vehicle are treated differently according to their mechanical nature. In the case studies based on a simply supported beam, the dynamic performance of the road vehicle and the bridge under varied vehicle speeds is calculated and discussed. The vertical acceleration characteristics of the midpoint of beam under varied vehicle speed can be grouped into two periods. The first one is affected by the load transform between the wheels, and the other one depends on the speed amplitude. Sudden change of the vertical acceleration of the beam and the longitudinal reaction force are observed as the wheels move on or off the bridge, and the bridge performs different dynamic responses during acceleration and braking.


Author(s):  
Chao Chen ◽  
Yu Shing Chan ◽  
Li Zou ◽  
Wei-Hsin Liao

Dampers are the parts of suspensions which improve the ride comfort and the safety of vehicles including motorcycles. Magnetorheological dampers are very attractive for motorcycle suspensions, because of their controllable properties and their fast responses. Considerable energy is wasted owing to the energy dissipation by dampers encountering road irregularities and accelerating processes during everyday use of motorcycles. In addition, the current magnetorheological suspension systems depend on the power supply of batteries. Therefore, in this paper, a self-powered magnetorheological damper for motorcycle suspensions is proposed and implemented for the first time. It can convert the wasted mechanical energy into useful electrical energy to power itself. There are great merits in this such as energy saving, independence of extra batteries and less maintenance in comparison with conventional magnetorheological suspension systems, while keeping controllable performances. A customized prototype of the self-powered magnetorheological damper that is compatible with a motorcycle is developed and actually implemented in a motorcycle. Modelling for the self-powered magnetorheological damper is developed and validated by laboratory testing. Laboratory testing showed that the self-powered feature works well to generate the electrical power and to vary the magnetorheological damping force. Preliminary system-level testing showed that a self-powered magnetorheological suspension results in a better ride comfort, compared with that of a magnetorheological suspension without power generation. The results showed that implementing self-powered magnetorheological dampers in motorcycle suspensions is feasible and beneficial.


Sign in / Sign up

Export Citation Format

Share Document