scholarly journals Impact of Pressure and Brine Salinity on Capillary Pressure-Water Saturation Relations in Geological CO2Sequestration

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jongwon Jung ◽  
Jong Wan Hu

Capillary pressure-water saturation relations are required to explore the CO2/brine flows in deep saline aquifers including storage capacity, relative permeability of CO2/brine, and change to stiffness and volume. The study on capillary pressure-water saturation curves has been conducted through experimentation and theoretical models. The results show that as the pressure increases up to 12 MPa, (1) capillary pressure-water saturation curves shift to lower values at given water saturation, (2) after the drainage process, residual water saturation decreases, and (3) after the imbibition process, capillary CO2trapping increases. Capillary pressure-water saturation curves above 12 MPa appear to be similar because of relatively constant contact angle and interfacial tension. Also, as brine salinity increases from 1 M to 3 M NaCl, (1) capillary pressure-water saturation curves shift to lower capillary pressure, (2) residual water saturation decreases, and (3) capillary CO2trapping increases. The results show that pressure and brine salinity have an influence on the capillary pressure-water saturation curves. Also, the scaled capillary CO2entry pressure considering contact angle and interfacial tension is inconsistent with atmospheric conditions due to the lack of wettability information. Better exploration of wettability alteration is required to predict capillary pressure-water saturation curves at various conditions that are relevant to geological CO2sequestration.

1973 ◽  
Vol 13 (04) ◽  
pp. 221-232 ◽  
Author(s):  
N.R. Morrow ◽  
P.J. Cram ◽  
F.G. McCaffery

Abstract Various nitrogen-, oxygen- and sulfur-containing compounds native to crude oils were screened for their effect on wettability as measured by contact angle. Solid substrates of quartz, calcite, and dolomite crystals were used to represent reservoir rock surfaces. With water and decane as liquids, contact angles were measured after a given polar compound was added to the oil phase. Contact angles measured at the two types of carbonate surfaces were generally similar. None of the nitrogen or sulfur compounds studied gave contact angles greater than 66 degrees on either quartz or carbonates. Of the oxygen-containing compounds, octanoic acid gave the widest range of contact angle - 0 degrees to 145 degrees on dolomite - over a molar concentration range up to 0.1. Capillary - pressure and relative-permeability curves were obtained for water and solutions of octanoic acid in oil, using packings of powdered dolomite as the porous medium. Because of a slow reaction between dolomite and octanoic acid, which was not revealed by standard contact angle studies, special precautions were needed to ensure satisfactory wettability control during displacement tests. Capillary-pressure drainage curves were measured at six contact angles, ranging from 0 degrees to 140 degrees. Drainage-imbibition cycles for three packings of distinctly different particle size were measured at contact angles of 0 degrees and 49 degrees. The effect of contact angle on imbibition capillary pressures was close to that found previously for porous polytetra-fluoroethylene, whereas there was comparatively polytetra-fluoroethylene, whereas there was comparatively less effect on drainage behavior-steady-state relative permeability curves exhibited distinct differences for contact angles of 15 degrees, 100 degrees and 155 degrees. Introduction Waterflooding is the most successful and widely applied improved recovery technique. Its application in Alberta has, on the average, more than doubled the recovery obtained by primary depletion. However, even after waterflooding, it is estimated that two-thirds of the discovered oil remains unrecovered. Interfacial forces acting during waterflooding lead to the entrapment of large quantities of residual oil in the swept zones. Considerable attention has been paid to recovering this oil through new recovery methods in which the interface is eliminated as in miscible processes, or the interfacial tension is drastically lowered, as in surfactant floods. Such processes involve a high initial cost for an injected solvent or surfactant bank. Recently released information on a variety of such improved recovery techniques has not been altogether encouraging with regard to developing economical processes. A distinct alternative to eliminating the interface is to understand it and learn how it can be manipulated to give increased waterflood recoveries. A prospect for improved recovery at interfacial tensions of the order normally encountered in reservoirs lies in a favorable adjustment of wettability by incorporating small amounts of low-cost additives in the floodwater. A first step in developing the technology of improved recovery by wettability alteration is to determine the effect of wettability alteration on displacement in systems of uniform wettability. It has been shown that, even in the "near miscible" surfactant processes, wettability can still have a significant influence on the extent to which interfacial tension must be lowered in order to mobilize residual oil. At the time when waterflooding first found widespread use, wettability was recognized as a variable that might well have a significant influence on recovery performance. Reservoir wettability and the role of wettability in displacement has been the subject of some 50 or so publications. Even so, many aspects of wettability are not well understood and there is no general agreement on a satisfactory method of characterizing it. Opinions as to the optimum wettability condition for recovery cover the spectrum from strongly water-wet through weakly water-wet or intermediately wet to strongly oil-wet. It has recently been suggested that a mixed wettability condition can give high ultimate recoveries. SPEJ P. 221


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


SPE Journal ◽  
2012 ◽  
Vol 18 (02) ◽  
pp. 296-308 ◽  
Author(s):  
Y.. Zhou ◽  
J.O.. O. Helland ◽  
D.G.. G. Hatzignatiou

Summary It has been demonstrated experimentally that Leverett's J-function yields almost unique dimensionless drainage capillary pressure curves in relatively homogeneous rocks at strongly water-wet conditions, whereas for imbibition at mixed-wet conditions, it does not work satisfactorily because the permeability dependency on capillary pressure has been reported to be weak. The purpose of this study is to formulate a new dimensionless capillary pressure function for mixed-wet conditions on the basis of pore-scale modeling, which could overcome these restrictions. We simulate drainage, wettability alteration, and imbibition in 2D rock images by use of a semianalytical pore-scale model that represents the identified pore spaces as cross sections of straight capillary tubes. The fluid configurations occurring during drainage and imbibition in the highly irregular pore spaces are modeled at any capillary pressure and wetting condition by combining the free-energy minimization with an arc meniscus (AM)-determining procedure that identifies the intersections of two circles moving in opposite directions along the pore boundary. Circle rotation at pinned contact lines accounts for mixed-wet conditions. Capillary pressure curves for imbibition are simulated for different mixed-wet conditions in Bentheim sandstone samples, and the results are scaled by a newly proposed improved J-function that accounts for differences in formation wettability induced by different initial water saturations after primary drainage. At the end of primary drainage, oil-wet-pore wall segments are connected by many water-wet corners and constrictions that remain occupied by water. The novel dimensionless capillary pressure expression accounts for these conditions by introducing an effective contact angle that depends on the initial water saturation and is related to the wetting property measured at the core scale by means of a wettability index. The accuracy of the proposed J-function is tested on 36 imbibition capillary pressure curves for different mixed-wet conditions that are simulated with the semianalytical model in scanning-electron-microscope (SEM) images of Bentheim sandstone. The simulated imbibition capillary pressure curves and the reproduced curves, based on the proposed J-function, are in good agreement for the mixed-wet conditions considered in this study. The detailed behavior is explained by analyzing the fluid displacements occurring in the pore spaces. It is demonstrated that the proposed J-function could be applied to mixed-wet conditions to generate a family of curves describing different wetting states induced by assigning different wetting properties on the solid surfaces or by varying the initial water saturation after primary drainage. The variability of formation wettability and permeability could be described more accurately in reservoir-simulation models by means of the proposed J-function, and hence the opportunity arises for improved evaluation of core-sample laboratory experiments and reservoir performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Olugbenga Falode ◽  
Edo Manuel

An understanding of the mechanisms by which oil is displaced from porous media requires the knowledge of the role of wettability and capillary forces in the displacement process. The determination of representative capillary pressure (Pc) data and wettability index of a reservoir rock is needed for the prediction of the fluids distribution in the reservoir: the initial water saturation and the volume of reserves. This study shows how wettability alteration of an initially water-wet reservoir rock to oil-wet affects the properties that govern multiphase flow in porous media, that is, capillary pressure, relative permeability, and irreducible saturation. Initial water-wet reservoir core samples with porosities ranging from 23 to 33%, absolute air permeability of 50 to 233 md, and initial brine saturation of 63 to 87% were first tested as water-wet samples under air-brine system. This yielded irreducible wetting phase saturation of 19 to 21%. The samples were later tested after modifying their wettability to oil-wet using a surfactant obtained from glycerophtalic paint; and the results yielded irreducible wetting phase saturation of 25 to 34%. From the results of these experiments, changing the wettability of the samples to oil-wet improved the recovery of the wetting phase.


Author(s):  
S. Vyzhva ◽  
V. Onyshchuk ◽  
I. Onyshchuk ◽  
M. Reva ◽  
O. Shabatura

The main objective of this article is to highlight the results of investigations of filtration capacity features of sandstones and argillites of the Upper Carbon rocks in Runovshchynska area of The Dnieper-Donets basin. The purpose of the research was to assess the promising rocks as possible hydrocarbon reservoirs. The following reservoir features of rock samples such as the open porosity factor, permeability coefficients and residual water saturation factor have been investigated. The correlation of rock density with their porosity was also studied. The porosity study was carried out in atmospheric and reservoir conditions by gas volumetric method and fluid saturation. The bulk density of dry rock samples varies from 2,122 kg/m3 to 2,615 kg/m3 (average 2318 kg/m3), saturated rocks – from 2265 to 2680 kg/m3 (average 2449 kg/m3), and the specific matrix density – from 2562 to 2786 kg/m3 (average 2650 kg/m3). The open porosity coefficient of the studied rocks, in case they were saturated with the synthetic brine, varies from 0.058 to 0.190 (mean 0.126), but if they were saturated with N2 it varies from 0.066 to 0.203 (mean 0.145). Detailed analysis of reservoir conditions modeling revealed that porosity coefficient varies from 0.038 to 0.175 (mean 0.110). Due to the closure of microcracks under rock loading reduced to reservoir conditions the porosity decreases in comparison with atmospheric conditions, which causes a relative decrease in the porosity coefficient from 4.5% to 13.8% (mean 9.0%) from atmospheric conditions to reservoir conditions. The permeability coefficient of rocks varies from 0.03 fm2 to 240.57 fm2 (mean 11.87 fm2). The residual water saturation factor of rocks varies from 0.02 to 0.89 (mean 0.36). The classification of the reservoir characteristics of the investigated samples by the permeability coefficients and residual water saturation factors has been fulfilled. The correlation analysis has allowed establishing a series of empirical relationships between the reservoir parameters of the studied rocks (density, porosity coefficient, permeability coefficient and residual water saturation factor). The results of complex petrophysical researches indicated that the promising oil-bearing intervals of the horizons G-6, G-7v, G-7n have, in general increased values of reservoir parameters.


2014 ◽  
Vol 17 (01) ◽  
pp. 37-48 ◽  
Author(s):  
Edwin Andrew Chukwudeme ◽  
Ingebret Fjelde ◽  
Kumuduni Abeysinghe ◽  
Arild Lohne

Summary The effect of interfacial tension (IFT) on the displacement of the nonwetting and wetting phases has been investigated by the use of simulations/history matching of flooding experiments. In surfactant flooding, a conventional assumption is to neglect the effect of capillary pressure (Pc) on measured two-phase properties. The methodology applied in this paper allows improved interpretation of experimental results by correcting for the influence of capillary end effects on the measured capillary desaturation curve (CDC) and on the estimated relative permeability (kr). Three fluid systems of different IFTs were prepared by use of a solvent system (CaCl2 brine/iso-octane/isopropanol) rather than a surfactant system with the assumption that both systems have similar flood behavior at reduced IFT. Three coreflood cycles, including multirate oil injection (drainage) followed by multirate water injection (imbibition), were carried out at each IFT in water-wet Berea cores. The kr functions corrected for capillary end effects were derived by numerically history matching the experimental production and pressure-drop (PD) history. A typical CDC is observed for the nonwetting phase oil, with a roughly constant plateau in residual oil saturation (ROS), Sor, below a critical capillary number (Ncc) and a declining slope above Ncc toward zero Sor. No influence of Pc was found for the nonwetting-phase CDC. The results from the displacement of the wetting phase formed an apparent CDC with a declining slope and no Ncc. Analyzing the wetting-phase results, we find that the wetting-phase CDC is not a true CDC. First, it is a plot of the average remaining water saturation (Sw) in the core which, in all the experiments, is higher than residual water saturation, Swr, obtained from Pc measurements. Second, we find that the remaining Sw is only partly a function of Nc. At low Nc, the water production (WP) is limited by capillary end effects. Rate-dependent WP observed with the high-IFT system is fully reproduced in simulations by use of constant kr and Pc. The remaining wetting-phase saturation at a low capillary number (Nc) is a result of the core-scale balance between viscous and capillary forces and would, for example, depend on the core length. At a higher Nc, the WP is found to be limited by the low kr tail, typical for wetting phases. However, we find that the kr functions become rate dependent at a higher Nc, and we assume that this rate dependency can be modeled as a function of Nc. The remaining wetting-phase saturation at a higher Nc would then be a function of Nc and the number of pore volumes (PVs) injected. The observed Nc dependency in the flow functions indicates a potential for the accelerated production of the wetting phase by use of surfactant. Assuming that the results obtained here for the wetting phase also apply to oil in a mixed-wet system, it is strongly recommended to evaluate the effect of both Pc and Ncc when designing a surfactant model for a mixed-wet field.


2019 ◽  
Vol 10 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Siamak Najimi ◽  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract Surfactants are used in the process of chemical water injection to reduce interfacial tension of water and oil and consequently decrease the capillary pressure in the reservoir. However, other mechanisms such as altering the wettability of the reservoir rock, creating foam and forming a stable emulsion are also other mechanisms of the surfactants flooding. In this study, the effects of three commercially available surfactants, namely AN-120, NX-1510 and TR-880, in different concentrations on interfacial tension of water and oil, the wettability of the reservoir rock and, ultimately, the increase in oil recovery based on pendant drop experiments, contact angle and carbonate core flooding have been investigated. The effects of concentration, temperature, pressure and salinity on the performances of these surfactants have also been shown. The results, in addition to confirming the capability of the surfactants to reduce interfacial tension and altering the wettability to hydrophilicity, show that the TR-880 has the better ability to reduce interfacial tension than AN-120 and NX-1510, and in the alteration of wettability the smallest contact angle was obtained by dissolving 1000 ppm of surfactant NX-1510. Also, the results of interfacial tension tests confirm the better performances of these surfactants in formation salinity and high salinity. Additionally, a total of 72% recovery was achieved with a secondary saline water flooding and flooding with a 1000 ppm of TR-880 surfactant.


Sign in / Sign up

Export Citation Format

Share Document