scholarly journals Experimental study of the performances of commercial surfactants in reducing interfacial tension and wettability alteration in the process of chemical water injection into carbonate reservoirs

2019 ◽  
Vol 10 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Siamak Najimi ◽  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract Surfactants are used in the process of chemical water injection to reduce interfacial tension of water and oil and consequently decrease the capillary pressure in the reservoir. However, other mechanisms such as altering the wettability of the reservoir rock, creating foam and forming a stable emulsion are also other mechanisms of the surfactants flooding. In this study, the effects of three commercially available surfactants, namely AN-120, NX-1510 and TR-880, in different concentrations on interfacial tension of water and oil, the wettability of the reservoir rock and, ultimately, the increase in oil recovery based on pendant drop experiments, contact angle and carbonate core flooding have been investigated. The effects of concentration, temperature, pressure and salinity on the performances of these surfactants have also been shown. The results, in addition to confirming the capability of the surfactants to reduce interfacial tension and altering the wettability to hydrophilicity, show that the TR-880 has the better ability to reduce interfacial tension than AN-120 and NX-1510, and in the alteration of wettability the smallest contact angle was obtained by dissolving 1000 ppm of surfactant NX-1510. Also, the results of interfacial tension tests confirm the better performances of these surfactants in formation salinity and high salinity. Additionally, a total of 72% recovery was achieved with a secondary saline water flooding and flooding with a 1000 ppm of TR-880 surfactant.

2021 ◽  
Vol 11 (2) ◽  
pp. 925-947
Author(s):  
Erfan Hosseini ◽  
Mohammad Sarmadivaleh ◽  
Dana Mohammadnazar

AbstractNumerous studies concluded that water injection with modified ionic content/salinity in sandstones would enhance the oil recovery factor due to some mechanisms. However, the effects of smart water on carbonated formations are still indeterminate due to a lack of experimental investigations and researches. This study investigates the effects of low-salinity (Low Sal) solutions and its ionic content on interfacial tension (IFT) reduction in one of the southwestern Iranian carbonated reservoirs. A set of organized tests are designed and performed to find each ion’s effects and total dissolved solids (TDS) on the candidate carbonated reservoir. A sequence of wettability and IFT (at reservoir temperature) tests are performed to observe the effects of controlling ions (sulfate, magnesium, calcium, and sodium) and different salinities on the main mechanisms (i.e., wettability alteration and IFT reduction). All IFT tests are performed at reservoir temperature (198 °F) to minimize the difference between reservoir and laboratory-observed alterations. In this paper, the effects of four different ions (SO42-, Ca2+, Mg2+, Na+) and total salinity TDS (40,000, 20,000, 5000 ppm) are investigated. From all obtained results, the best two conditions are applied in core flooding tests to obtain the relative permeability alterations using unsteady-state methods and Cydarex software. The final part is the simulation of the whole process using the Schlumberger Eclipse black oil simulator (E100, Ver. 2010) on the candidate reservoir sector. To conclude, at Low Sal (i.e., 5000 ppm), the sulfate ion increases sulfate concentration lower IFT, while in higher salinities, increasing sulfate ion increases IFT. Also, increasing calcium concentration at high TDS (i.e., 40,000 ppm) decreases the amount of wettability alteration. In comparison, in lower TDS values (20,000 and 5000 ppm), calcium shows a positive effect, and its concentration enhanced the alteration process. Using Low Sal solutions at water cut equal or below 10% lowers recovery rate during simulations while lowering the ultimate recovery of less than 5%.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3988 ◽  
Author(s):  
Omid Haghighi ◽  
Ghasem Zargar ◽  
Abbas Khaksar Manshad ◽  
Muhammad Ali ◽  
Mohammad Takassi ◽  
...  

Production from mature oil reservoirs can be optimized by using the surfactant flooding technique. This can be achieved by reducing oil and water interfacial tension (IFT) and modifying wettability to hydrophilic conditions. In this study, a novel green non-ionic surfactant (dodecanoyl-glucosamine surfactant) was synthesized and used to modify the wettability of carbonate reservoirs to hydrophilic conditions as well as to decrease the IFT of hydrophobic oil–water systems. The synthesized non-ionic surfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and chemical shift nuclear magnetic resonance (HNMR) analyses. Further pH, turbidity, density, and conductivity were investigated to measure the critical micelle concentration (CMC) of surfactant solutions. The result shows that this surfactant alters wettability from 148.93° to 65.54° and IFT from 30 to 14 dynes/cm. Core-flooding results have shown that oil recovery was increased from 40% (by water flooding) to 59% (by surfactant flooding). In addition, it is identified that this novel non-ionic surfactant can be used in CO2 storage applications due to its ability to alter the hydrophobicity into hydrophilicity of the reservoir rocks.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1296 ◽  
Author(s):  
Reidun C. Aadland ◽  
Salem Akarri ◽  
Ellinor B. Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter

Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1227 ◽  
Author(s):  
Muhammad Tahir ◽  
Rafael E. Hincapie ◽  
Nils Langanke ◽  
Leonhard Ganzer ◽  
Philip Jaeger

The injection of sulfonated-modified water could be an attractive application as it results in the formation of a mechanically rigid oil-water interface, and hence, possible higher oil recovery in combination with polymer. Therefore, detailed experimental investigation and fluid-flow analysis into porous media are required to understand the possible recovery mechanisms taking place. This paper evaluates the potential influence of low-salt/sulfate-modified water injection in oil recovery using a cross-analyzed approach of coupled microfluidics data and core flooding experiments. Fluid characterization was achieved by detailed rheological characterization focusing on steady shear and in-situ viscosity. Moreover, single and two-phase micromodels and core floods experiments helped to define the behavior of different fluids. Overall, coupling microfluidics, with core flooding experiments, confirmed that fluid-fluid interfacial interaction and wettability alteration are both the key recovery mechanisms for modified-water/low-salt. Finally, a combination of sulfate-modified/low-salinity water, with polymer flood can lead to ~6% extra oil, compared to the combination of polymer flood with synthetic seawater (SSW). The results present an excellent way to make use of micromodels and core experiments as a supporting tool for EOR processes evaluations, assessing fluid-fluid and rock-fluid interactions.


1964 ◽  
Vol 4 (03) ◽  
pp. 231-239 ◽  
Author(s):  
A.S. Michaels ◽  
Arnold Stancell ◽  
M.C. Porter

MICHAELS, A.S., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. MEMBER AIME STANCELL, ARNOLD, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. PORTER, M.C., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. Abstract Previous laboratory studies have demonstrated that the injection of small quantities of reverse wetting agents during water displacement can increase oil recovery from unconsolidated porous media. In the present investigation, an attempt has been made to determine more fully the effects of reverse wetting treatments and to clarify the mechanism by which increased oil recovery is effected Water-oil displacements were performed in beds of 140–200 mesh silica sand. Hexylamine slugs (injected after 0.25 pore volume of water through put), when adequate in size and concentration, were effective in promoting additional oil recovery. Their effectiveness increased with the quantity of amine injected. However, slugs of sufficient size and concentration to stimulate oil production at water flow rates of 34 ft/day did not do so at 4 ft/day.Visual studies in a glass grid micromodel have shown that the stimulation of oil production, via aqueous bexylamine, is a result of transient changes in the oil wettability of the pore walls. If the am in e slug is of sufficient size and concentration to induce significant changes in the adhesion-tension, large continuous oil masses will be formed. If the superficial water velocity is high enough to result in rapid desorption of the am in e, a favorable "wettability gradient" may be established across the masses; under such conditions, high oil mobility is observed, and increased oil recovery results. Introduction It is generally agreed that the efficiency of oil displacement by water in porous media is limited in part by capillary forces which cause the retention of isolated masses of oil - resulting in the so-called "irreducible minimum oil saturation". Recent estimates indicate that there are about 220 billion bbl of petroleum in United States reservoirs which are not economically recoverable with present techniques (such as water flooding). This amounts to almost five times the known recoverable reserves. It has been recognized for some time that a suitable alteration in the water-oil interfacial tension and/or the contact angle, as measured between the water-oil interface and the solid surface, should result in better displacement efficiency. Surface active agents can be used as interfacial tension depressants to accomplish this objective, but unfortunately, the additional oil recovery is seldom commensurate with the treatment cost.In contrast to interfacial tension depressants, the effect of contact angle alterations on water- oil displacements has received relatively little attention in the literature. It is known that the wettability affects the displacement process. Displacements in water-wet systems generally result in lower residual oil saturations than those in oil-wet systems. The effect of "transient" wettability alterations concurrent with the displacement process have been investigated by Wagner, Leach and coworkers, wherein it has been demonstrated that the establishment of water- wet conditions during water flooding of oil-wet, oil-saturated porous media is accompanied by significant increase in oil displacement efficiency. Michaels and Timmins studied the effects of transient contact angle alterations resulting from chromatographic transport of reverse wetting agents through unconsolidated sand. It was demonstrated that chromatographic transport of short-chain (C4 through C8) primary aliphatic amines can improve oil recovery and that the recovery increases with the quantity of amine injected (i.e., with either the amine concentration or the volume of the slug injected). Circumstantial evidence indicated that the increased displacement efficiency resulted primarily from transient changes in wettability of the porous medium.In the present investigation, additional information has been obtained on the effects of reverse wetting treatments and the mechanism by which increased oil recovery is accomplished. SPEJ P. 231^


2020 ◽  
Vol 10 (6) ◽  
pp. 6652-6668

Historically, smart water flooding is proved as one of the methods used to enhance oil recovery from hydrocarbon reservoirs. This method has been spread due to its low cost and ease of operation, with changing the composition and concentration of salts in the water, the smart water injection leads to more excellent compatibility with rock and fluids. However, due to a large number of sandstone reservoirs in the world and the increase of the recovery factor using this high-efficiency method, a problem occurs with the continued injection of smart water into these reservoirs a phenomenon happened in which called rock leaching. Indeed, sand production is the most common problem in these fields. Rock wettability alteration toward water wetting is considered as the main cause of sand production during the smart water injection mechanism. During this process, due to stresses on the rock surface as well as disturbance of equilibrium, the sand production in the porous media takes place. In this paper, the effect of wettability alteration of oil wetted sandstones (0.005,0.01,0.02 and 0.03 molar stearic acid in normal heptane) on sand production in the presence of smart water is fully investigated. The implementation of an effective chemical method, which is nanoparticles, have been executed to prevent sand production. By stabilizing silica nanoparticles (SiO2) at an optimum concentration of 2000 ppm in smart water (pH=8) according to the results of Zeta potential and DLS test, the effect of wettability alteration of oil wetted sandstones on sand production in the presence of smart water with nanoparticles is thoroughly reviewed. Ultimately, a comparison of the results showed that nanoparticles significantly reduced sand production.


2020 ◽  
Vol 10 (5) ◽  
pp. 6328-6342 ◽  

Low salinity water in the oil reservoirs changes the wettability and increases the oil recovery factor. In sandstone reservoirs, the sand production occurs or intensifies with wettability alteration due to low salinity water injection. In any case, sand production should be stopped and there are many ways to prevent sand production. By modifying the composition of low salinity water, it can be adapted to be more compatible with the reservoir rock and formation water, which has the least formation damage. By eliminating magnesium and calcium ions, smart soft water (SSW) is created which is economically suitable for injection into the reservoirs. By stabilizing the nanoparticles in SSW, nanofluids can be prepared which with injection into the sandstones reservoir increase the oil recovery, change the wettability and increase the rock strength. In this present, SSW composition was determined by compatibility testing, and the SiO2 nanoparticle with 1000 ppm concentration was stabilized in SSW. Eight thin sections were oil wetted by using normal heptane solution and different molars of stearic acid and two thin sections were considered as base thin sections to compare the effect of wettability alteration on sand production. Thin sections were immersed in SSW and Nanofluid, the amount of contact angle and sand production were measured in both cases. The amount of sand produced and the contact angle in SSW was higher than the Nanofluid. The silica nanoparticles reduced the contact angle (more water wetting) and by sitting between the sand particles, more than 40%, it reduced sand production.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 972 ◽  
Author(s):  
Amin Rezaei ◽  
Hadi Abdollahi ◽  
Zeinab Derikvand ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Amir Mosavi ◽  
...  

As a fixed reservoir rock property, pore throat size distribution (PSD) is known to affect the distribution of reservoir fluid saturation strongly. This study aims to investigate the relations between the PSD and the oil–water relative permeabilities of reservoir rock with a focus on the efficiency of surfactant–nanofluid flooding as an enhanced oil recovery (EOR) technique. For this purpose, mercury injection capillary pressure (MICP) tests were conducted on two core plugs with similar rock types (in respect to their flow zone index (FZI) values), which were selected among more than 20 core plugs, to examine the effectiveness of a surfactant–nanoparticle EOR method for reducing the amount of oil left behind after secondary core flooding experiments. Thus, interfacial tension (IFT) and contact angle measurements were carried out to determine the optimum concentrations of an anionic surfactant and silica nanoparticles (NPs) for core flooding experiments. Results of relative permeability tests showed that the PSDs could significantly affect the endpoints of the relative permeability curves, and a large amount of unswept oil could be recovered by flooding a mixture of the alpha olefin sulfonate (AOS) surfactant + silica NPs as an EOR solution. Results of core flooding tests indicated that the injection of AOS + NPs solution in tertiary mode could increase the post-water flooding oil recovery by up to 2.5% and 8.6% for the carbonate core plugs with homogeneous and heterogeneous PSDs, respectively.


2020 ◽  
Vol 17 (5) ◽  
pp. 1318-1328
Author(s):  
Sara Habibi ◽  
Arezou Jafari ◽  
Zahra Fakhroueian

Abstract Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and challenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO42− and Ca2+ ions in the presence of nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased efficiency of about 7.5%.


Sign in / Sign up

Export Citation Format

Share Document