scholarly journals The Fluid-Solid Interaction Dynamics between Underwater Explosion Bubble and Corrugated Sandwich Plate

2016 ◽  
Vol 2016 ◽  
pp. 1-21
Author(s):  
Hao Wang ◽  
Yuan Sheng Cheng ◽  
Jun Liu ◽  
Lin Gan

Lightweight sandwich structures with highly porous 2D cores or 3D (three-dimensional) periodic cores can effectively withstand underwater explosion load. In most of the previous studies of sandwich structure antiblast dynamics, the underwater explosion (UNDEX) bubble phase was neglected. As the UNDEX bubble load is one of the severest damage sources that may lead to structure large plastic deformation and crevasses failure, the failure mechanisms of sandwich structures might not be accurate if only shock wave is considered. In this paper, detailed 3D finite element (FE) numerical models of UNDEX bubble-LCSP (lightweight corrugated sandwich plates) interaction are developed by using MSC.Dytran. Upon the validated FE model, the bubble shape, impact pressure, and fluid field velocities for different stand-off distances are studied. Based on numerical results, the failure modes of LCSP and the whole damage process are obtained. It is demonstrated that the UNDEX bubble collapse jet local load plays a more significant role than the UNDEX shock wave load especially in near-field underwater explosion.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiongwei Cui ◽  
Xiongliang Yao ◽  
Yingyu Chen

Direct measurement of the wall pressure loading subjected to the near-field underwater explosion is of great difficulty. In this article, an improved methodology and a lab-scale experimental system are proposed and manufactured to assess the wall pressure loading. In the methodology, a Hopkinson bar (HPB), used as the sensing element, is inserted through the hole drilled on the target plate and the bar’s end face lies flush with the loaded face of the target plate to detect and record the pressure loading. Furthermore, two improvements have been made on this methodology to measure the wall pressure loading from a near-field underwater explosion. The first one is some waterproof units added to make it suitable for the underwater environment. The second one is a hard rubber cylinder placed at the distal end, and a pair of ropes taped on the HPB is used to pull the HPB against the cylinder hard to ensure the HPB’s end face flushes with loaded face of the target plate during the bubble collapse. To validate the pressure measurement technique based on the HPB, an underwater explosion between two parallelly mounted circular target plates is used as the validating system. Based on the assumption that the shock wave pressure profiles at the two points on the two plates which are symmetrical to each other about the middle plane of symmetry are the same, it was found that the pressure obtained by the HPB was in excellent agreement with pressure transducer measurements, thus validating the proposed technique. To verify the capability of this improved methodology and experimental system, a series of minicharge underwater explosion experiments are conducted. From the recorded pressure-time profiles coupled with the underwater explosion evolution images captured by the HSV camera, the shock wave pressure loading and bubble-jet pressure loadings are captured in detail at 5  mm, 10  mm, …, 30  mm stand-off distances. Part of the pressure loading of the experiment at 35  mm stand-off distance is recorded, which is still of great help and significance for engineers. Especially, the peak pressure of the shock wave is captured.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
F. Caputo ◽  
A. De Luca ◽  
A. Greco ◽  
A. Marro ◽  
A. Apicella ◽  
...  

Usually during the design of landing gear, simplified Finite Element (FE) models, based on one-dimensional finite elements (stick model), are used to investigate the in-service reaction forces involving each subcomponent. After that, the design of such subcomponent is carried out through detailed Global/Local FE analyses where, once at time, each component, modelled with three-dimensional finite elements, is assembled into a one-dimensional finite elements based FE model, representing the whole landing gear under the investigated loading conditions. Moreover, the landing gears are usually investigated also under a kinematic point of view, through the multibody (MB) methods, which allow achieving the reaction forces involving each subcomponent in a very short time. However, simplified stick (FE) and MB models introduce several approximations, providing results far from the real behaviour of the landing gear. Therefore, the first goal of this paper consists of assessing the effectiveness of such approaches against a 3D full-FE model. Three numerical models of the main landing gear of a regional airliner have been developed, according to MB, “stick,” and 3D full-FE methods, respectively. The former has been developed by means of ADAMS® software, the other two by means of NASTRAN® software. Once this assessment phase has been carried out, also the Global/Local technique has verified with regard to the results achieved by the 3D full-FE model. Finally, the dynamic behaviour of the landing gear has been investigated both numerically and experimentally. In particular, Magnaghi Aeronautica S.p.A. Company performed the experimental test, consisting of a drop test according to EASA CS 25 regulations. Concerning the 3D full-FE investigation, the analysis has been simulated by means of Ls-Dyna® software. A good level of accuracy has been achieved by all the developed numerical methods.


2011 ◽  
Vol 677 ◽  
pp. 305-341 ◽  
Author(s):  
A. R. JAMALUDDIN ◽  
G. J. BALL ◽  
C. K. TURANGAN ◽  
T. G. LEIGHTON

Recent clinical trials have shown the efficacy of a passive acoustic device used during shock wave lithotripsy (SWL) treatment. The device uses the far-field acoustic emissions resulting from the interaction of the therapeutic shock waves with the tissue and kidney stone to diagnose the effectiveness of each shock in contributing to stone fragmentation. This paper details simulations that supported the development of that device by extending computational fluid dynamics (CFD) simulations of the flow and near-field pressures associated with shock-induced bubble collapse to allow estimation of those far-field acoustic emissions. This is a required stage in the development of the device, because current computational resources are not sufficient to simulate the far-field emissions to ranges of O(10 cm) using CFD. Similarly, they are insufficient to cover the duration of the entire cavitation event, and here simulate only the first part of the interaction of the bubble with the lithotripter shock wave in order to demonstrate the methods by which the far-field acoustic emissions resulting from the interaction can be estimated. A free-Lagrange method (FLM) is used to simulate the collapse of initially stable air bubbles in water as a result of their interaction with a planar lithotripter shock. To estimate the far-field acoustic emissions from the interaction, this paper developed two numerical codes using the Kirchhoff and Ffowcs William–Hawkings (FW-H) formulations. When coupled to the FLM code, they can be used to estimate the far-field acoustic emissions of cavitation events. The limitation of the technique is that it assumes that no significant nonlinear acoustic propagation occurs outside the control surface. Methods are outlined for ameliorating this problem if, as here, computational resources cannot compute the flow field to sufficient distance, although for the clinical situation discussed, this limitation is tempered by the effect of tissue absorption, which here is incorporated through the standard derating procedure. This approach allowed identification of the sources of, and explanation of trends seen in, the characteristics of the far-field emissions observed in clinic, to an extent that was sufficient for the development of this clinical device.


2004 ◽  
Vol 126 (2) ◽  
pp. 258-263
Author(s):  
Toru Hamada ◽  
Shigeru Itoh ◽  
Kenji Murata ◽  
Yukio Kato

An explosive configuration was studied so that the underwater shock wave converges at the tip of the explosive, and a three-dimensional spiral configuration was obtained. This spiral configuration need to be analyzed theoretically due to the relation of propagation velocity of underwater shock wave, detonation velocity of the explosive and a configuration of vessel to charge the explosive. In order to study an effect of the convergence, pressure measurement at the spiral center was carried out by using a manganin gauge. Therefore, when SEP was used in this experiment, the maximum pressure value was 17.7 GPa. This maximum pressure value is higher than the pressure value of underwater shock wave generated from the underwater explosion of a straight configuration. Furthermore, this maximum pressure value was higher than C-J pressure of SEP. An initial pressure of underwater shock water shock wave that can obtain from an isentropic expansion curve of SEP and a characteristic curve of water is 5.7 GPa, and C-J pressure of SEP is 15.9 GPa. From the above-mentioned, the effect of spiral convergence could be shown well.


Author(s):  
Rui Han ◽  
Aman Zhang ◽  
Shiping Wang

Underwater explosion is a severe threat to nearby ocean structures, such as underwater construction, floating vessels. The pressure load produced by underwater explosion of explosives consists of shock wave load and the explosion bubble pulsation pressure load. After the detonation, there will be a shock wave propagating radially outwards and it’s followed by a large oscillating bubble. The shock wave has the first damaging effect on adjacent structures. Then, the collapse and high-speed jet of oscillating bubbles will cause the second damage to structures. When there are double explosive sources near a rigid structure, the mutual superposition of shock waves and the interaction between two bubbles may improve the explosive damage. If the distance between one explosive source and the rigid structure is fixed, the damage force produced by double underwater explosions is related to many factors, like the detonation time difference and the distance between two explosive sources. At first, the pressure field in single explosive source case is numerically simulated by using the AUTODYN in this paper. Next, pressure fields of underwater explosion detonated by double sources at the same time and with time difference are calculated, respectively. The flow fields in double explosive sources case are compared with that in single explosive source case. The effect of the detonation time difference and the distance between explosive sources on the damage force is investigated and analysed in detail.


Author(s):  
Dongjie Ai ◽  
Yuansheng Cheng ◽  
Jun Liu ◽  
Jianhu Liu ◽  
Haikun Wang ◽  
...  

Sandwich panel structures, which consist of two thin faces and low relative density cores, can significantly mitigate the possibilities of panel fractures. In the present paper, numerical simulations are conducted to study the deformation and fracture modes of sandwich structures under near-field underwater blasts and contact underwater blasts. Two different core materials are employed, namely aluminum foam and PVC foam. Main focus of this paper was placed to (i) study the failure mechanisms and energy absorption characteristics of sandwich structures in typical conditions, (ii) to demonstrate the benefits of such structures compared with solid plates of equal weight, and (iii) to obtain the properties of withstanding underwater explosion for single core material sandwich panels. In addition, the effects of panel thickness configuration and core height on deformation and energy absorption of the plates were explored. Results indicated that sandwich structures showed an effective reduction in the maximum panel deflection compared with a monolithic plate of same mass. The design parameters have great impacts on the results.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Qiusheng Wang ◽  
Shicong Liu ◽  
Haoran Lou

The centrifugal underwater explosion tests and corresponding numerical simulations were carried out to study the laws of shock wave and bubble pulsation. A semiempirical method to determine JWL state equation parameters was given. The influence on numerical results caused by factors such as state equation of water, boundary condition, and mesh size was analyzed by comparing with the centrifugal underwater explosion test results. The results show that the similarity criterion is also suitable in numerical simulation; the shock wave peak pressure calculated by polynomial state equation is smaller than that of shock state equation. However, the maximum bubble radius and the pulsation period calculated by the two equations are almost the same. The maximum bubble radius is mainly affected by the boundary simulating the test model box, and the pulsation period is mainly affected by the artificial cutoff boundary. With the increase of standoff distance of measuring point, the mesh size required for the numerical calculation decreases; the size of the two-dimensional model is recommended to take 1/30 ∼ 1/10 explosion radius. In three-dimensional models, when mesh size is 2 times larger than explosion radius, the bubble motion change in the second pulsation period is not obvious. When mesh size is smaller than 1 time explosive radius, the full period of bubble pulsation can be well simulated, but calculation errors increase slowly and computation time greatly increases, so the three-dimensional mesh size is suggested to take the charge radius. Shock wave peak pressure is basically unaffected by gravity. As the gravity increases, the bubble maximum radius and the first pulsation period both decrease.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Michel Behr ◽  
Jeremie Pérès ◽  
Maxime Llari ◽  
Yves Godio ◽  
Yves Jammes ◽  
...  

Over the past decade, road safety research and impact biomechanics have strongly stimulated the development of anatomical human numerical models using the finite element (FE) approach. The good accuracy of these models, in terms of geometric definition and mechanical response, should now find new areas of application. We focus here on the use of such a model to investigate its potential when studying respiratory mechanics. The human body FE model used in this study was derived from the RADIOSS® HUMOS model. Modifications first concerned the integration and interfacing of a user-controlled respiratory muscular system including intercostal muscles, scalene muscles, the sternocleidomastoid muscle, and the diaphragm and abdominal wall muscles. Volumetric and pressure measurement procedures for the lungs and both the thoracic and abdominal chambers were also implemented. Validation of the respiratory module was assessed by comparing a simulated maximum inspiration maneuver to volunteer studies in the literature. Validation parameters included lung volume changes, rib rotations, diaphragm shape and vertical deflexion, and intra-abdominal pressure variation. The HUMOS model, initially dedicated to road safety research, could be turned into a promising, realistic 3D model of respiration with only minor modifications.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Jun Liu

Three-dimensional fully coupled simulation is conducted to analyze the dynamic response of sandwich panels comprising equal thicknesses face sheets sandwiching a corrugated core when subjected to localized impulse created by the detonation of cylindrical explosive. A large number of computational cases have been calculated to comprehensively investigate the performance of sandwich panels under near-field air blast loading. Results show that the deformation/failure modes of panels depend strongly on stand-off distance. The beneficial FSI effect can be enhanced by decreasing the thickness of front face sheet. The core configuration has a negligible influence on the peak reflected pressure, but it has an effect on the deflection of a panel. It is found that the benefits of a sandwich panel over an equivalent weight solid plate to withstand near-field air blast loading are more evident at lower stand-off distance.


Sign in / Sign up

Export Citation Format

Share Document