scholarly journals MP Resulting in Autophagic Cell Death of Microglia through Zinc Changes against Spinal Cord Injury

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Dingding Li ◽  
Guannan Wang ◽  
Donghe Han ◽  
Jing Bi ◽  
Chenyuan Li ◽  
...  

Methylprednisolone pulse therapy (MPPT), as a public recognized therapy of spinal cord injury (SCI), is doubted recently, and the exact mechanism of MP on SCI is unclear. This study sought to investigate the exact effect of MP on SCI. We examined the effect of MP in a model of SCI in vivo and an LPS induced model in vitro. We found that administration of MP produced an increase in the Basso, Beattie, and Bresnahan scores and motor neurons counts of injured rats. Besides the number of activated microglia was apparently reduced by MP in vivo, and Beclin-1 dependent autophagic cell death of microglia was induced by MP in LPS induced model. At the same time, MP increases cellular zinc concentration and level of ZIP8, and TPEN could revert effect of MP on autophagic cell death of microglia. Finally, we have found that MP could inhibit NF-κβin LPS induced model. These results show that the MP could result in autophagic cell death of microglia, which mainly depends on increasing cellular labile zinc, and may be associated with inhibition of NF-κβ, and that MP can produce neuroprotective effect in SCI.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vera Paschon ◽  
Beatriz Cintra Morena ◽  
Felipe Fernandes Correia ◽  
Giovanna Rossi Beltrame ◽  
Gustavo Bispo dos Santos ◽  
...  

Abstract During the progression of the neurodegenerative process, mitochondria participates in several intercellular signaling pathways. Voltage-dependent anion-selective channel 1 (VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary cell death, a secondary response that comprises the release of pro-inflammatory molecules triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor functions. Here, we investigated the functional role of VDAC1 in the neurodegeneration triggered by SCI. We first determined that in vitro targeted ablation of VDAC1 by specific morpholino antisense nucleotides (MOs) clearly promotes neurite retraction, whereas a pharmacological blocker of VDAC1 oligomerization (4, 4′-diisothiocyanatostilbene-2, 2′-disulfonic acid, DIDS), does not cause this effect. We next determined that, after SCI, VDAC1 undergoes conformational changes, including oligomerization and N-terminal exposition, which are important steps in the triggering of apoptotic signaling. Considering this, we investigated the effects of DIDS in vivo application after SCI. Interestingly, blockade of VDAC1 oligomerization decreases the number of apoptotic cells without interfering in the neuroinflammatory response. DIDS attenuates the massive oligodendrocyte cell death, subserving undisputable motor function recovery. Taken together, our results suggest that the prevention of VDAC1 oligomerization might be beneficial for the clinical treatment of SCI.


2019 ◽  
Author(s):  
Zhanjun Ma ◽  
Yubao Lu ◽  
Fengguang Yang ◽  
Shaoping Li ◽  
Xuegang He ◽  
...  

Abstract Background: Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI in vivo and in vitro. Methods: In vivo experiment, The BBB locomotion scale, the inclined plane test, Nissl staining, and spinal cord edema were employed to determine the neuroprotective effects of RA treatment after SCI. Inflammatory and oxidative stress markers were detected by commercial kits and cell apoptosis status was measured by TUNEL staining. A proteomics and bioinformatics approach, together with Western blotting, was used to investigate the effect of RA on the proteome of SCI rats. In vitro experiment, oxidative stress and inflammatory injury were induced by H2O2 and LPS stimulation. Effects of RA on cell viability, apoptosis, inflammatory, and oxidative stress were evaluated. Results: Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IkB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Conclusions: Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pei Yu ◽  
Kai Yang ◽  
Min Jiang

Nerve regeneration after spinal cord injury is regulated by many factors. Studies have found that the expression of retinoid X receptor α (RXRα) does not change significantly after spinal cord injury but that the distribution of RXRα in cells changes significantly. In undamaged tissues, RXRα is distributed in motor neurons and the cytoplasm of glial cells. RXRα migrates to the nucleus of surviving neurons after injury, indicating that RXRα is involved in the regulation of gene expression after spinal cord injury. p66shc is an important protein that regulates cell senescence and oxidative stress. It can induce the apoptosis and necrosis of many cell types, promoting body aging. The absence of p66shc enhances the resistance of cells to reactive oxygen species (ROS) and thus prolongs life. It has been found that p66shc deletion can promote hippocampal neurogenesis and play a neuroprotective role in mice with multiple sclerosis. To verify the function of RXRα after spinal cord injury, we established a rat T9 spinal cord transection model. After RXRα agonist or antagonist administration, we found that RXRα agonists inhibited nerve regeneration after spinal cord injury, while RXRα antagonists promoted the regeneration of injured neurites and the recovery of motor function in rats. The results showed that RXRα played an impeding role in repair after spinal cord injury. Immunofluorescence staining showed that p66shc expression was upregulated in neurons after spinal cord injury (in vivo and in vitro) and colocalized with RXRα. RXRα overexpression in cultured neurons promoted the expression of p66shc, while RXRα interference inhibited the expression of p66shc. Using a luciferase assay, we found that RXRα could bind to the promoter region of p66shc and regulate the expression of p66shc, thereby regulating nerve regeneration after spinal cord injury. The above results showed that RXRα inhibited nerve regeneration after spinal cord injury by promoting p66shc expression, and interference with RXRα or p66shc promoted functional recovery after spinal cord injury.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


Spine ◽  
2011 ◽  
Vol 36 (22) ◽  
pp. E1427-E1434 ◽  
Author(s):  
Haruo Kanno ◽  
Hiroshi Ozawa ◽  
Akira Sekiguchi ◽  
Seiji Yamaya ◽  
Eiji Itoi

2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2018 ◽  
Vol 300 ◽  
pp. 247-258 ◽  
Author(s):  
Ioana Goganau ◽  
Beatrice Sandner ◽  
Norbert Weidner ◽  
Karim Fouad ◽  
Armin Blesch

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Elisa Garcia ◽  
Jorge Aguilar-Cevallos ◽  
Raul Silva-Garcia ◽  
Antonio Ibarra

Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.


2020 ◽  
Vol 21 (19) ◽  
pp. 7031
Author(s):  
Zhuo-Hao Liu ◽  
Yin-Cheng Huang ◽  
Chang-Yi Kuo ◽  
Chao-Ying Kuo ◽  
Chieh-Yu Chin ◽  
...  

Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.


Author(s):  
Dasa Cizkova ◽  
Françoise Le Marrec-Croq ◽  
Julien Franck ◽  
Lucia Slovinska ◽  
Ivana Grulova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document