scholarly journals Nonlinear Seismic Behavior of Different Boundary Conditions of Transmission Line Systems under Earthquake Loading

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Li Tian ◽  
Xia Gai

Nonlinear seismic behaviors of different boundary conditions of transmission line system under earthquake loading are investigated in this paper. The transmission lines are modeled by cable element accounting for the nonlinearity of the cable. For the suspension type, three towers and two span lines with spring model (Model 1) and three towers and four span lines’ model (Model 2) are established, respectively. For the tension type, three towers and two span lines’ model (Model 3) and three towers and four span lines’ model (Model 4) are created, respectively. The frequencies of the transmission towers and transmission lines of the suspension type and tension type are calculated, respectively. The responses of the suspension type and tension type are investigated using nonlinear time history analysis method, respectively. The results show that the responses of the transmission tower and transmission line of the two models of the suspension type are slightly different. However, the responses of transmission tower and transmission line of the two models of the tension type are significantly different. Therefore, in order to obtain accurate results, a reasonable model should be considered. The results could provide a reference for the seismic analysis of the transmission tower-line system.

2012 ◽  
Vol 166-169 ◽  
pp. 2259-2264
Author(s):  
Li Tian ◽  
Hong Nan Li ◽  
Wen Ming Wang

The behavior of transmission line under three-dimensional seismic excitations is studied by numerical simulation. According to a practical engineering, the transmission towers are modeled by frame elements and the transmission lines are modeled by cable element account for the nonlinearity of the cable. The effects of single-dimensional, two-dimensional and three-dimensional ground motions on the responses of transmission line are investigated using nonlinear time history analysis method, respectively. The results indicate that the longitudinal maximum response of transmission lines can be obtained considering longitudinal ground motion excitation only. The transverse maximum response of transmission lines can be obtained considering transverse ground motion excitation only. Neglecting multiple nature of ground motion in analysis will significantly underestimate the vertical responses of the transmission lines. To obtain an accurate seismic response of transmission lines, three-dimensional ground motion inputs are required.


2014 ◽  
Vol 687-691 ◽  
pp. 3423-3426 ◽  
Author(s):  
Xiao Dong Feng ◽  
Feng Ren Fu ◽  
Tong Chen Miao ◽  
Yong Xing Lai ◽  
Xian Fa Wang

In this paper, according to the structure character of transmission tower, the transmission lines are simulated as link10 space spar elements which have the unique feature of a bilinear stiffness matrix resulting in a uniaxial tension-only (or compression-only) elements and the transmission tower are simulated as space element beam188 and link 8. So the ANSYS fine finite element models of transmission tower-line system which are more agrees with engineering practices are set up, dynamic characteristics are calculated on nine conditions and the influences of transmission line on dynamic characteristics of the transmission tower are discussed, some valuable conclusions are given.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer ◽  
Adel Manaa Dakhil

<span lang="EN-US">This paper presents a fast and accurate fault detection, classification and direction discrimination algorithm of transmission lines using one-dimensional convolutional neural networks (1D-CNNs) that have ingrained adaptive model to avoid the feature extraction difficulties and fault classification into one learning algorithm. A proposed algorithm is directly usable with raw data and this deletes the need of a discrete feature extraction method resulting in more effective protective system. The proposed approach based on the three-phase voltages and currents signals of one end at the relay location in the transmission line system are taken as input to the proposed 1D-CNN algorithm. A 132kV power transmission line is simulated by Matlab simulink to prepare the training and testing data for the proposed 1D- CNN algorithm. The testing accuracy of the proposed algorithm is compared with other two conventional methods which are neural network and fuzzy neural network. The results of test explain that the new proposed detection system is efficient and fast for classifying and direction discrimination of fault in transmission line with high accuracy as compared with other conventional methods under various conditions of faults.</span>


2019 ◽  
Vol 16 (1) ◽  
pp. 172988141982994 ◽  
Author(s):  
Xiaolong Hui ◽  
Jiang Bian ◽  
Xiaoguang Zhao ◽  
Min Tan

This article presents a monocular-based navigation approach for unmanned aerial vehicle safe and continuous inspection along one side of transmission lines. To this end, a navigation model based on the transmission tower and the transmission-line vanishing point was proposed, and the following three key issues were addressed. First, a deep-learning-based object detection and a fast and smooth tracking algorithm based on the kernelized correlation filter were combined to locate transmission tower timely and reliably. Second, the vanishing point of transmission lines was computed and optimized to provide unmanned aerial vehicle with a robust and precise flight direction. Third, to keep a stable safe distance from transmission lines, the transmission lines were first rectified by optimizing a homography matrix to eliminate the parallel distortion, and then their interval variation was estimated for reflecting the spatial distance variation. Finally, the real distance from transmission tower was measured by the triangulation across multiple views. The proposed navigation approach and the designed UAV platform were tested in a field environment, which achieved an encouraging result. To the best of authors’ knowledge, this article marks the first time that a safe and continuous navigation approach along one side of transmission lines is put forward and implemented.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Li Tian ◽  
Wenming Wang ◽  
Hui Qian

The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system.


2015 ◽  
Vol 744-746 ◽  
pp. 335-339
Author(s):  
Hong Dong Ran ◽  
Le Chen ◽  
Yun Mei Ma

Four single-story single-span Gabled Frame Structures (GFSs) which included in China national Standard Design Drawing of Light-weight Steel Structure with Gabled Frame (02SG518-1) were studied and their longitudinal seismic performances were evaluated through extensive nonlinear time-history analysis using eight ground motions representing the Frequent Earthquake, DBE and the MCE hazard levels, the load-bearing performances, deformation capacities and the curves of displacement were studied. The analysis results showed that the longitudinal seismic action of all GFSs considered in this study is very little, the displacement at the top of the column can satisfy the demands of the Technical Specificationfor Steel Structure of Light-weight Building with Gabled Frames even in MCE. The GFSs designed followed the Specificaiton have the excellent longitudinal seismic performance.


2013 ◽  
Vol 325-326 ◽  
pp. 673-676
Author(s):  
Lian Yang ◽  
Bin Wang ◽  
Xiao Feng Li ◽  
Chuan Hu

500kV EHV transmission networks have become the main one of the national grid, carring out live working for 500kV EHV transmission lines is the objective requirements to ensure the stable operation of the grid system. This paper uses a new system to simulate and analyse the way of entering the high electric area on 500kV transmission line. The system has built the ZM1 transmission tower and line model, accurately accounted the complex gap and satety distance. The simulation results show that the system can effectively get the best secure route and determine the way to enter into the equipotential with the safety margin.


2014 ◽  
Vol 597 ◽  
pp. 376-379 ◽  
Author(s):  
Feng Lin Gan ◽  
Hai Long Jiang

For wind-induced vibration of transmission tower-line system, the vibration reduction effects are studied based on a new type steel-lead viscoelastic damper. Firstly, Calculate damped coefficient basing on the test of the new type steel-lead viscoelastic damper under slow reversed cyclic horizontal loads. Then, a finite element model of transmission tower was built by using ANSYS. And the time history samples of random fluctuating wind load is obtained with the linear auto-regressive filter law principle. Next, three installation plans of dampers on tower were proposed based on analyzing the working principle damper and the structure of tower. Finally, a wind-induced vibration transient response simulation was performed respectively for the different plans. The influences of SLVD dampers on the displacement and on the acceleration of the controlled nodes were compared. SLVD damper can reduce the top node displacement by about 37.89%. The results indicated that the SLVD damper can suppress the wind-induced vibration. And through comparison, the optimal installation scheme of SLVD dampers is obtained.


Author(s):  
Hong-Nan Li ◽  
Wen-Long Shi ◽  
Guo-Xin Wang

The simplified computational models of high-voltage transmission tower-line system under out-of-plane and in-plane vibrations are presented due to seismic excitations in this paper. The equations of motion are derived and the computer program is compiled to obtain the earthquake responses of the coupled system. To verify the rationality of the proposed approaches, the shaking-table experiments of the coupled system of transmission lines and their supporting towers are carried out and the results indicate that the errors of theoretical and testing results of systemic seismic responses are within the acceptable arrange in engineering area. Based on these studies, a simplified analysis method is proposed to make the seismic response calculation of coupled tower-conductor system faster and more effective.


Sign in / Sign up

Export Citation Format

Share Document