scholarly journals Isotropic Stars in Higher-Order Torsion Scalar Theories

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Gamal G. L. Nashed

Two different nondiagonal tetrad spaces reproducing spherically symmetric spacetime are applied to the field equations of higher-order torsion scalar theories. Assuming the existence of conformal Killing vector, two isotropic solutions are derived. We show that the first solution is not stable while the second one confirms a stable behavior. We also discuss the construction of the stellar model and show that one of our solutions is capable of such construction while the other is not. Finally, we discuss the generalized Tolman-Oppenheimer-Volkoff and show that one of our models has a tendency to equilibrium.

2015 ◽  
Vol 24 (07) ◽  
pp. 1550049 ◽  
Author(s):  
Farook Rahaman ◽  
Anirudh Pradhan ◽  
Nasr Ahmed ◽  
Saibal Ray ◽  
Bijan Saha ◽  
...  

We study different dimensional fluids inspired by noncommutative geometry which admit conformal Killing vector (CKV). The solutions of the Einstein field equations were examined specifically for five different set of spacetime. We calculate the active gravitational mass and impose stability conditions of the fluid sphere. The analysis thus carried out immediately indicates that at four dimension only one can get a stable configuration for any spherically symmetric stellar system and any other dimension, lower or higher, becomes untenable as far as the stability of a system is concerned.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
G. G. L. Nashed ◽  
S. D. Odintsov ◽  
V. K. Oikonomou

AbstractIn this paper we shall consider spherically symmetric spacetime solutions describing the interior of stellar compact objects, in the context of higher-order curvature theory of the $${{\mathrm {f(R)}}}$$ f ( R ) type. We shall derive the non-vacuum field equations of the higher-order curvature theory, without assuming any specific form of the $${{\mathrm {f(R)}}}$$ f ( R ) theory, specifying the analysis for a spherically symmetric spacetime with two unknown functions. We obtain a system of highly non-linear differential equations, which consists of four differential equations with six unknown functions. To solve such a system, we assume a specific form of metric potentials, using the Krori–Barua ansatz. We successfully solve the system of differential equations, and we derive all the components of the energy–momentum tensor. Moreover, we derive the non-trivial general form of $${{\mathrm {f(R)}}}$$ f ( R ) that may generate such solutions and calculate the dynamic Ricci scalar of the anisotropic star. Accordingly, we calculate the asymptotic form of the function $${\mathrm {f(R)}}$$ f ( R ) , which is a polynomial function. We match the derived interior solution with the exterior one, which was derived in [1], with the latter also resulting to a non-trivial form of the Ricci scalar. Notably but rather expected, the exterior solution differs from the Schwarzschild one in the context of general relativity. The matching procedure will eventually relate two constants with the mass and radius of the compact stellar object. We list the necessary conditions that any compact anisotropic star must satisfy and explain in detail that our model bypasses all of these conditions for a special compact star $$\textit{Her X--1}$$ Her X - - 1 , which has an estimated mass and radius $$(mass = 0.85 \pm 0.15M_{\circledcirc }\ and\ radius = 8.1 \pm 0.41~\text {km}$$ ( m a s s = 0.85 ± 0.15 M ⊚ a n d r a d i u s = 8.1 ± 0.41 km ). Moreover, we study the stability of this model by using the Tolman–Oppenheimer–Volkoff equation and adiabatic index, and we show that the considered model is different and more stable compared to the corresponding models in the context of general relativity.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Bruno J. Barros ◽  
Bogdan Dǎnilǎ ◽  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Abstract We investigate static and spherically symmetric solutions in a gravity theory that extends the standard Hilbert–Einstein action with a Lagrangian constructed from a three-form field $$A_{\alpha \beta \gamma }$$Aαβγ, which is related to the field strength and a potential term. The field equations are obtained explicitly for a static and spherically symmetric geometry in vacuum. For a vanishing three-form field potential the gravitational field equations can be solved exactly. For arbitrary potentials numerical approaches are adopted in studying the behavior of the metric functions and of the three-form field. To this effect, the field equations are reformulated in a dimensionless form and are solved numerically by introducing a suitable independent radial coordinate. We detect the formation of a black hole from the presence of a Killing horizon for the timelike Killing vector in the metric tensor components. Several models, corresponding to different functional forms of the three-field potential, namely, the Higgs and exponential type, are considered. In particular, naked singularity solutions are also obtained for the exponential potential case. Finally, the thermodynamic properties of these black hole solutions, such as the horizon temperature, specific heat, entropy and evaporation time due to the Hawking luminosity, are studied in detail.


2021 ◽  
Vol 36 (29) ◽  
Author(s):  
Joaquin Estevez-Delgado ◽  
Modesto Pineda Duran ◽  
Arthur Cleary-Balderas ◽  
Noel Enrique Rodríguez Maya ◽  
José Martínez Peña

Starting from a regular, static and spherically symmetric spacetime, we present a stellar model formed by two sources of ordinary and quintessence matter both with anisotropic pressures. The ordinary matter, with density [Formula: see text], is formed by a fluid with a state equation type Chaplygin [Formula: see text] for the radial pressure. And the quintessence matter, with density [Formula: see text], has a state equation [Formula: see text] for the radial pressure and [Formula: see text] for the tangential pressure with [Formula: see text]. The model satisfies the required conditions to be physically acceptable and additionally the solution is potentially stable, i.e. [Formula: see text] according to the cracking concept, and it also satisfies the Harrison–Zeldovich–Novikov criteria. We describe in a graphic manner the behavior of the solution for the case in which the mass is [Formula: see text] and radius [Formula: see text][Formula: see text]km which matches the star EXO 1785-248, from where we obtain the maximum density [Formula: see text] for the values of the parameters [Formula: see text], [Formula: see text].


2018 ◽  
Vol 33 (12) ◽  
pp. 1850065 ◽  
Author(s):  
Suhail Khan ◽  
Muhammad Shoaib Khan ◽  
Amjad Ali

In this paper, our aim is to study (n + 2)-dimensional collapse of perfect fluid spherically symmetric spacetime in the context of f(R, T) gravity. The matching conditions are acquired by considering a spherically symmetric non-static (n + 2)-dimensional metric in the inner region and Schwarzschild (n + 2)-dimensional metric in the outer region of the star. To solve the field equations for above settings in f(R, T) gravity, we choose the stress–energy tensor trace and the Ricci scalar as constants. It is observed that two physical horizons, namely, cosmological and black hole horizons appear as a consequence of this collapse. A singularity is also formed after the birth of both the horizons. It is also observed that the term f(R0, T0) slows down the collapsing process.


2016 ◽  
Vol 25 (07) ◽  
pp. 1650083 ◽  
Author(s):  
M. Sharif ◽  
H. Ismat Fatima

We investigate interior solutions for static spherically symmetric metric in the background of [Formula: see text] gravity. We use the technique of conformal Killing motions to solve the field equations with both isotropic and anisotropic matter distributions. These solutions are then used to obtain density, radial and tangential pressures for power-law [Formula: see text] model. For anisotropic case, we assume a linear equation-of-state and investigate solutions for the equation-of-state parameter [Formula: see text]. We check physical validity of the solutions through energy conditions and also examine its stability. Finally, we study equilibrium configuration using Tolman–Oppenheimer–Volkoff equation.


2019 ◽  
Vol 34 (27) ◽  
pp. 1950215 ◽  
Author(s):  
M. Farasat Shamir ◽  
Nabeeha Uzair

The aim of this paper is to examine the irregularity factors of a self-gravitating stellar system in the existence of anisotropic fluid. We investigate the dynamics of field equations within [Formula: see text] background, where [Formula: see text] is the Gauss–Bonnet invariant and [Formula: see text] is the trace of the energy–momentum tensor. Moreover, we have investigated two differential equations using the conservation law and the Weyl tensor. We have determined the irregularity factors of spherical stellar system for some specific conditions of anisotropic and isotropic fluids, dust, radiating and non-radiating systems in [Formula: see text] gravity. It has been noted that the dissipative matter results in anisotropic stresses and makes the system more complex. The inhomogeneity factor is correlated to one of the scalar functions.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050149 ◽  
Author(s):  
Ghulam Shabbir ◽  
Fiaz Hussain ◽  
Shabeela Malik ◽  
Muhammad Ramzan

The aim of this paper is to investigate the conformal vector fields (CVFs) for some vacuum classes of static spherically symmetric space-times in [Formula: see text] gravity. First, we have explored the space-times by solving the Einstein field equations in [Formula: see text] gravity. These solutions have been obtained by imposing various conditions on the space-time components and selecting separable form of the bivariate function [Formula: see text]. Second, we find the CVFs of the obtained space-times via direct integration approach. The overall study reveals that there exist 17 cases. From these 17 cases, the space-times in five cases admit proper CVFs whereas in rest of the 12 cases, CVFs become Killing vector fields (KVFs). We have also calculated the torsion scalar and boundary term for each of the obtained solutions.


Sign in / Sign up

Export Citation Format

Share Document