scholarly journals The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammed Gad ◽  
Aws S. ArRejaie ◽  
Mohamed Saber Abdel-Halim ◽  
Ahmed Rahoma

Objective.The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base.Materials and Methods.Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n=10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P≤0.05).Results.Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P≤0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin.Conclusion.Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers.

2015 ◽  
Vol 1 (1) ◽  
pp. 102
Author(s):  
Pramudya Aditama ◽  
Siti Sunarintyas ◽  
Widjijono Widjijono

Resin akrilik merupakan bahan yang sering digunakan dalam pembuatan basis gigi tiruan. Kelemahan resin akrilik adalah mudah patah. Salah satu cara untuk mengatasi masalah tersebut adalah dengan menambahkan polyethylene (PE) atau glass fiber. Tujuan dari penelitian ini untuk mengetahui pengaruh jenis dan volumetrik fiber terhadap kekuatan transversal reparasi plat resin akrilik. Penelitian ini menggunakan dua puluh lima plat resin akrilik kuring panas berukuran 65 x 10 x 2,5 mm. Subjek dipreparasi untuk membuat jarak 3 mm dan sudut bevel 45o. Subjek dibagi menjadi 5 kelompok, masingmasing kelompok terdiri dari 5 subjek. Kelompok 1 (kontrol) tanpa penambahan fiber, kelompok II dengan penambahan 3,7% v/v PE fiber, kelompok III dengan penambahan 7,4% v/v PE fiber, kelompok IV dengan penambahan 3,7% v/v E-glass fiber, dan kelompok V dengan penambahan 7,4% v/v E-glass fiber. Seluruh plat direndam dalam air destilasi selama satu hari pada suhu 37oC. Pengujian kekuatan transversal plat resin akrilik dengan menggunakan Universal Testing Machine dan data yang didapat dianalisis menggunakan ANAVA dua jalur dengan tingkat kepercayaan 95%. Rerata kekuatan transversal (MPa) reparasi plat resin akrilik yang diperkuat fiber: 3,7% v/v PE fiber (67,77±3,34); 7,4% v/v PE fiber (80,37±8,42); 3,7% v/v E-glass fiber (96,72±5,43); 7,4% v/v E-glass fiber (109,44±4,98); sedangkan reparasi plat resin yang tidak diperkuat fiber menghasilkan kekuatan transversal 56,27±4,7 MPa. Hasil analisis menggunakanANAVA dua jalur menunjukkan variabel jenis dan volumetrik fiber memberikan pengaruh signifikan (p<0,05), sedangkan interaksi antara jenis dan volumetrik fiber tidak berpengaruh signifikan (p>0,05). Uji post hoc Tukey menunjukkan perbedaan signifikan (p<0,05) untuk seluruh kelompok perlakuan. Penambahan E-glass fiber dalam reparasi plat resinakrilik mampu meningkatkan kekuatan transversal lebih tinggi dibandingkan dengan menggunakan PE fiber. Peningkatan volumetrik fiber dapat meningkatkan kekuatan transversal reparasi plat resin akrilik. Effect Of Type And Volumetric Fiber On Transverse Strength Of Acrylic Resin Plate Repair. Acrylic resin is the most common denture base material. A disadvantage of acrylic resin is that it is easily fractured. One way to resolve this problem is by adding polyethylene (PE) or glass fibers. The purpose of this research is to find out about the effect of type and volumetric fiber on transverse strength of acrylic resin plate repaired. The experiment involved twenty five plates of heat cured acrylic with the dimensions of 65 x 10 x 2.5 mm. The speciments were prepared to create a 3 mm gap and 45° bevel. The subjects were divided into 5 groups; each group consisted of 5. Group I (control) was without fiber reinforcement, group II reinforced with 3.7% v/v PE fiber, group III reinforced with 7.4% v/v PE fiber, group IV reinforced with 3.7% v/v E-glass fiber, and group V reinforced with 7.4% v/v E-glass fiber. All plates were soaked in distilled water for one day at 37° C temperature. The plates were tested for transverse strength with Universal Testing Machine and all data obtained were analyzed with two way ANOVA at 95% confidence level. The mean of transverse strength (MPa) of the acrylic resin plate repair reinforced with fiber: 3.7% v/v PE fiber was (67.77±3.34); 7.4% v/v PE fiber (80.37±8.42); 3.7% v/v E-glass fiber (96.72±5.43); 7.4% v/v E-glass fiber (109.44±4.98); while the transverse strength of the acrylic resin plate with no fiber reinforced was 56.27±4.7 MPa. Two way ANOVA analysis shows that type and volumetric fiber had significant effect (p<0.05), while the interaction between type and volumetric fiber had no significant effect (p>0.05). Tukey post hoc test shows significant difference (p<0.05) for all groups. The addition of E-glass fibers in the acrylic resin plate repaired increased the transverse strength higher than that with PE fibers. The increase in volumetric fibers might improve the transverse strength of the acrylic resin plate repaired.


2012 ◽  
Vol 06 (01) ◽  
pp. 070-078 ◽  
Author(s):  
Mehmet Dalkiz ◽  
Demet Arslan ◽  
Riza Ali Tuncdemir ◽  
Selim M Bilgin ◽  
Halil Aykul

ABSTRACTObjective: The aim of this study was to determine the effect of different palatal vault shapes on the dimensional stability of a glass fiber reinforced heat polymerized acrylic resin denture base materialMethods: Three edentulous maxilla with shallow, deep and medium shaped palatal vaults were selected and elastomeric impressions were obtained. A maxillary cast with four reference points (A, B, C, and D) was prepared to serve as control. Point (A) was marked in the anterior midline of the edentulous ridge in the incisive papillary region, points (B) and (C) were marked in the right and left posterior midlines of the edentulous ridge in the second molar regions, and point (D) was marked in the posterior palatal midline near the fovea palatina media (Figure 2). To determine linear dimensional changes, distances between four reference points (A-B, A-C, A-D and B-C) were initially measured with a metal gauge accurate within 0.1 mm under a binocular stereo light microscope and data (mm) were recordedResults:No significant difference of interfacial distance was found in sagittal and frontal sections measured 24 h after polymerization and after 30 days of water storage in any of experimental groups (P>05). Significant difference of linear dimension were found in all experimental groups (P<.01) between measurements made 24 h after polymerization of specimens and 30 days after water storageConclusion: Palatal vault shape and fiber impregnation into the acrylic resin bases did not affect the magnitude of interfacial gaps between the bases and the stone cast surfaces. (Eur J Dent 2012;6:70-78)


2019 ◽  
Vol S (1) ◽  
pp. 7-10
Author(s):  
Ahmed Asim Saeed Al-Ali ◽  
◽  
Ammar k. Al-Noori ◽  
Amer A. Taqa ◽  
◽  
...  

Objectives: Compare tensile and transverse strength of new copolymers for denture base. Materials and methods: The specimens were prepared from heat cured acrylic resin with three types of additives: Acryester B, Ethoxycarbonylethylene, and Propenoic acid at a percentage of 5% and 10%. The tensile and transverse strains were tested, recorded and compared. Results: The analysis of variance display statistically significant difference. The p-value was 0.001 for each of tensile and transverse strain tests. Conclusions: The tensile strength of the novel copolymers increased. The transverse strength of some of the novel copolymers increased.


2021 ◽  
Vol 6 (2) ◽  
pp. 71
Author(s):  
Rudy S ◽  
Titik Ismiyati ◽  
Endang Wahyuningtyas

Heat cured acrylic resin is the most commonly used denture base materials.  Zirconium dioxide (ZrO2) nanoparticles can be applied as additional filler to increase mechanical strength and to reduce the amount of residual monomer. The aim of this research is to analyze the effect of ZrO2 nanoparticles concentrations as filler on heat cured acrylic resin denture base toward viability of fibroblast cells. Twenty four disc-shaped heat cured acrylic resin plate (diameter 5 mm; width 2 mm), were divided into 4 groups (n=6), they were consisted of group I control (acrylic resin), group II acrylic resin with 2.5% ZrO2, group III acrylic resin with 5% ZrO2, and group IV acrylic resin with 7.5% ZrO2. Cell viability was obtained using MTT assay and ELISA plate reader. The result is examined with one way ANOVA followed by LSD post hoc assessment. The result showed highest cell viability percentage on experimental group of 2.5% ZrO2 with value as high as 97.49%. One way ANOVA test and LSD post hoc test showed a significant difference between groups (p<0.05). The conclusion of this research is ZrO2 nanoparticles concentration utilized as filler on heat cured acrylic resin denture base is effect to viability of fibroblast cells, and ZrO2 nanoparticles 2.5% shows the highest viability of fibroblast cell compared to 5% and 7.5% ZrO2 nanoparticles concentrations  


2019 ◽  
Vol 1 (1) ◽  
pp. 35
Author(s):  
Pramudya Aditama ◽  
Erwan Sugiatno ◽  
Sabdayana Sabdayana

Acrylic resin is the most commonly used denture base material. However, it has a shortage of being easily broken. One way to resolve this problem is by adding polyethylene (PE) or glass fibers. The purpose of this research is to compare the transversal strength of PE and glass fibers from denture plate acrylic resin repair material. The experiment involved 32 plates of heat cure acrylic with the dimensions of 65 mm x 10 mm x 2.5 mm. The speciments were prepared to create a 3 mm gap and 45° bevel. Subjects were divided into 2 groups, each group containing 16 plates. Group I was reinforced with PE fiber and Group II was reinforced with glass fiber. All plates were soaked in distillation water for one day at 37 °C. Plates were tested for transverse strength with universal testing machine and all data were analyzed with independent t-tes at 95% confidence level. Macro photo analysis was used to observed the bond failure on fiber and resin. The mean of transverse strength (MPa) denture plate acrylic resin repair material reinforced with PE fiber was (67.38 ± 4.31) MPa, while glass fiber was (93.61 ± 6.14) MPa. Independent t-tes showed that type of fiber had a significant effect (p<0.05). Thus, it is possible to conclude that addition of glass fibers in denture plate acrylic resin repair material increased the transverse strength and made it stronger than those added with PE fibers.


2015 ◽  
Vol 3 (2) ◽  
pp. 68-73
Author(s):  
Riezka Hanafiah Putri ◽  
Zulkarnain Agus ◽  
Eni Rahmi

Heat-polymerized  acrylic  resins  is  the  most  used  denture  base  material  in  prosthodontics.  One  of  mechanical properties of acrylic resins is transverse strength. It represents the masticatory pressure that is applied to denture base. Black tea is the second largest consumed beverage in the world. The aim of this study was to investigate the effect of black tea beverage on transverse strength of heat-polymerized acrylic resins. A total of 24 heat-polymerized acrylic resin plates (65×10×2,5 mm) were immersed in black tea beverage for 1, 4, and 20 days as treatment group and in aquadest for 1, 4, and 20 days as control group. The transverse strength of  acrylic samples were measured by three–point bending test by universal testing machine. Data were statistically analyzed using Independent t test. The transverse strength values of acrylic resin immersed in black tea beverage had no significant differences to the transverse strength values of acrylic resin immersed in aquadest with similar immersion time (p>0,05). There was no effect of black tea beverage on transverse strength of heat-polymerized acrylic resins. Immersion time decrease the transverse strength of heat-polymerized acrylic resins due to water sorption. Keywords: Heat-polymerized acrylic resins, black tea, transverse strength


Author(s):  
Eddy Dahar ◽  
Raudhatul Husna

Heat polymerized acrylic resin is the most common material used for making denture base because of it’s advantages. However, this material still hasn’t fulfill all the ideal requirements as a denture base. Some disadvantages that need to be fixed are low impact and transverse strength causing an easy base of fracture. Several attempts were made to improve the mechanical properties of heat polymerized acrylic resin materials by adding reinforcing materials. Zirconium oxide is one of chemical group that can be used as a reinforcing material and polypropylene fiber which is including in fiber reinforcing groups. This study aims to determine whether there is a difference in the effect of the addition of 5% ZrO2 nanoparticles and 2% chopped polypropylene fibers 6 mm in length on the impact and transverse strength of heat polymerized acrylic resin denture base material. The design of this study is a laboratory experimental and the number of samples in this study are 60 samples. The result of this study shows the mean value of the impact and transverse strength of heat polymerized acrylic resin with ZrO2 nanoparticles reinforced is greater than the control group and heat polymerized acrylic resin group with polypropylene fiber reinforced with significant difference, and the mean value of impact and transverse strength of heat polymerized acrylic resin with polypropylene fibers reinforced is greater than the control group with significant difference.


2021 ◽  
Vol 17 (1) ◽  
pp. 49-55
Author(s):  
Ni Kadek Sugianitri ◽  
◽  
Suhendra Suhendra ◽  

Introduction: Acrylic resin is the most common material for the denture base because the acrylic resin has good esthetics, ease of processing, reparability, and inexpensive. A disadvantage of acrylic resin is that it is easy to be cracked. One of the ways to resolve this problem is by adding agave sisalana fiber and E-glass fiber. The purpose of this study was to find out the effect of the addition of agave sisalana fiber and E-glass fiber on the impact strength of an acrylic resin denture plate reparation. Material and Method: The experiment involved twenty-seven plates of heat-cured acrylic with the dimensions of 55x 10 x 10 mm with the 26 x 5 x 4 mm for the cavity to measure, each measurement divided into three groups, with nine samples for each group. The first group was a control group (without fiber), the second group was a group with agave sisalana fiber addition, the third group was a group with e-glass fiber addition. All plates were soaked in distillation water for one day at 37o C. Plates were tested for impact strength using the Charpy method. All data obtained were analyzed with one-way ANOVA followed by LSD (Least Significant Difference) with p<0,05. Result and Discussion: The result showed that the influences of impact strength between without fiber with agave sisalana fiber and E-glass fiber addition on acrylic denture reparation. Acrylic denture reparation in both fibers with concentration 3,3%, agave sisalana fiber has the highest impact strength rather than e-glass fiber. Conclusion: The conclusion of this study is that there is an increase in impact strength with agave sisalana fiber and E-glass fiber addition on acrylic denture reparation and agave sisalana fiber has the highest impact strength.


2016 ◽  
Vol 3 (2) ◽  
pp. 128
Author(s):  
Aprilia Dian Fatimina ◽  
Benni Benyamin ◽  
Helmi Fathurrahman

Background: One of factor that increases the flexural strenght of fiberreinforced acrylic resin is a fiberglass position . Fiberglass is one of type that can be used in dentistry. The aim of this was to determine the influence of position of fiberglass to the flexural strenght of fiber reinforced acrylic resin.Method: This study was in vitro laboratory experimental. Samples was 16plate spesimens (65x10x2.5mm). The study group was divided into 4 group : 3 groups of fiber reinforced acrylic resin were given fiberglass at the upper, middle, and bottom side and 1 control group of resin acrylic without fiberglass. All of groups would be in the flexural strenght test with a three-point bending test using a universal testing machine.Result: Based on One Way ANOVA test showed that there were significantvalue 0.000 (p<0.05), it concluded that there were significant influencebetween all the groups. Based on the LSD Post Hoc test showed that therewere significant value between all of groups with fiberglass reinforced andcontrol group without fiberglass reinforced. Comparisson between the group that given fiberglass in a upper and middle side with the group that given in bottom side showed value of significant difference (p < 0.05).Conclusion: The result of study was concluded that there was an influenceon the position of fiberglass to flexural strenght of fiber reinforced acrylic resin


2017 ◽  
Vol 2 (1) ◽  
pp. 40
Author(s):  
Pramudya Aditama ◽  
Erwan Sugiatno ◽  
Muhamad Rifqi Tri Nuryanto

The effect of e-glass fiber volumetric on transverse strength of an acrylic resin denture plate repair. Acrylic resin is the most commonly material for the denture base. A disadvantage of acrylic resin is that it is easily to be cracked. One of the ways to resolve this problem is by adding the E-glass fibers. The purpose of this research was to find out the effect of volumetric E-glass fiber on transverse strength of an acrylic resin denture plate repair. The experiment involved thirty plates of heat cured acrylic with the dimensions of 65 × 10 × 2.5 mm. The specimens were prepared to create a 3-mm gap and 45° bevel. Subjects were divided in to 3 groups, each of which contained 10. Group I (control) was with no fiber reinforcement, group II was reinforced with 3.7vol % E-glass fiber, and group III was reinforced with 7.4 volume % E-glass fiber. All plates were soaked in distillation water for one day at 37 °C. Plates were tested for transverse strength with Universal Testing Machine and all data obtained was analyzed with one way anova at 95% confidence level (α= 0.05). The significant difference was found between the transversal force of acrylic resin plat enforced with fiber and other group without being reinforced with fibers (p<0.05). Group reinforced with 7.4 vol % E-glass fibers showed a significant difference (higher) than the group reinforced with 3.7 volume % fibers. The addition of E-glass fibers in an acrylic resin plate repair material increased the transverse strength. The increase in volumetric fibers might improve the transverse strength of an acrylic resin plate repair material.ABSTRAKResin akrilik merupakan bahan yang sering digunakan dalam pembuatan basis gigi tiruan. Kekurangan dari bahan resin akrilik adalah mudah patah. Salah satu cara yang dapat digunakan untuk mengatasi masalah tersebut adalah dengan menambahkan E-glass fiber. Tujuan untuk mengetahui pengaruh volumetrik E-glass fiber terhadap kekuatan transversal reparasi plat gigi tiruan resin akrilik. Penelitian ini menggunakan tiga puluh plat resin akrilik kuring panas dengan ukuran 65 × 10 × 2,5 mm. Spesimen dipreparasi untuk membentuk jarak 3 mm dan sudut bevel 45°. Subjek kemudian dibagi menjadi 3 kelompok, setiap kelompok terdiri dari 10 plat. Kelompok I (kontrol) tanpa diberikan penguat fiber, kelompok II diperkuat dengan 3,7 vol % E-glass  ber, dan kelompok III diperkuat dengan 7,4 vol % E-glass fiber. Seluruh plat kemudian direndam dalam air destilasi selama satu hari pada suhu 37 °C. Plat resin akrilik kemudian diuji menggunakan Universal Testing Machine untuk mengetahui kekuatan transversal dan data yang didapatkan dianalisis menggunakan Anova satu jalur dengan tingkat kepercayaan 95% (α=0,05). Hasil menunjukkan terdapat perbedaan signifikan antara kekuatan transversal plat resin akrilik yang diperkuat dengan fiber dengan kelompok tanpa diperkuat fiber (p < 0,05). Kelompok yang diperkuat dengan 7,4 vol % E-glass fiber menunjukkan perbedaan signi kan (lebih tinggi) dibandingkan kelompok yang diperkuat dengan 3,7 vol % fiber. Kesimpulan bahwa peningkatan volume dari E-glass fiber dapat meningkatkan kekuatan transversal reparasi plat gigi tiruan resin akrilik.


Sign in / Sign up

Export Citation Format

Share Document