scholarly journals Autoimmune Hepatitis: Progress from Global Immunosuppression to Personalised Regulatory T Cell Therapy

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Nwe Ni Than ◽  
Hannah C. Jeffery ◽  
Ye H. Oo

Autoimmune hepatitis (AIH) is an immune mediated liver injury. The precise aetiology of AIH is still unknown but current evidence suggests both genetic and environmental factors are involved. Breakdown in peripheral self-tolerance, and impaired functions of FOXP3+regulatory T cell along with effector cell resistance to suppression at the tissue level seem to play an important role in AIH immunopathogenesis. AIH is predominantly a T lymphocytes driven disease but B lymphocytes are also involved in the immunopathology. Innate immune cells are crucial in the initial onset of disease and their response is followed by adaptive T (Th1, Th17, and cytotoxic T cells) and B cell responses evidenced by liver histology and peripheral blood serology. Standard treatment regimens involving steroid and immunosuppressive medications lead to global immune suppression requiring life-long therapy with many side effects. Biologic therapies have been attempted but duration of remission is short-lived. Future direction of diagnosis and treatment for AIH should be guided by “omics” and the immunology profile of the individual patient and clinicians should aim to deliver personalised medicine for their patients. Cell therapy such as infusion of autologous, antigen-specific, and liver-homing regulatory T cells to restore hepatic immune tolerance may soon be a potential future treatment for AIH patients.

Gut ◽  
2020 ◽  
Vol 69 (5) ◽  
pp. 942-952 ◽  
Author(s):  
Jennie N Clough ◽  
Omer S Omer ◽  
Scott Tasker ◽  
Graham M Lord ◽  
Peter M Irving

The prevalence of IBD is rising in the Western world. Despite an increasing repertoire of therapeutic targets, a significant proportion of patients suffer chronic morbidity. Studies in mice and humans have highlighted the critical role of regulatory T cells in immune homeostasis, with defects in number and suppressive function of regulatory T cells seen in patients with Crohn’s disease. We review the function of regulatory T cells and the pathways by which they exert immune tolerance in the intestinal mucosa. We explore the principles and challenges of manufacturing a cell therapy, and discuss clinical trial evidence to date for their safety and efficacy in human disease, with particular focus on the development of a regulatory T-cell therapy for Crohn’s disease.


2017 ◽  
Author(s):  
Gunassekaran Gowri Rangaswamy ◽  
Poongkavithai Vadevoo Sri Murugan ◽  
Guruprasath Padmanaban ◽  
Lianhua Chi ◽  
Ha-Jeong Kim ◽  
...  

2014 ◽  
Vol 37 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Géraldine Gallot ◽  
Solène Vollant ◽  
Soraya Saïagh ◽  
Béatrice Clémenceau ◽  
Régine Vivien ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Castelletti ◽  
Dannel Yeo ◽  
Nico van Zandwijk ◽  
John E. J. Rasko

AbstractMalignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


Leukemia ◽  
2021 ◽  
Author(s):  
Mohamed-Reda Benmebarek ◽  
Bruno L. Cadilha ◽  
Monika Herrmann ◽  
Stefanie Lesch ◽  
Saskia Schmitt ◽  
...  

AbstractTargeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A172-A172
Author(s):  
Guillermo Rangel Rivera ◽  
Guillermo Rangel RIvera ◽  
Connor Dwyer ◽  
Dimitrios Arhontoulis ◽  
Hannah Knochelmann ◽  
...  

BackgroundDurable responses have been observed with adoptive T cell therapy (ACT) in some patients. However, current protocols used to expand T cells often exhibit suboptimal tumor control. Failure in these therapies has been attributed to premature differentiation and impaired metabolism of the infused T cells. Previous work done in our lab showed that reduced PI3Kδ signaling improved ACT. Because PI3Kγ and PI3Kδ have critical regulatory roles in T cell differentiation and function, we tested whether inhibiting PI3Kγ could recapitulate or synergize PI3Kδ blockade.MethodsTo test this, we primed melanoma specific CD8+ pmel-1 T cells, which are specific to the glycoprotein 100 epitope, in the presence of PI3Kγ (IPI-459), PI3Kδ (CAL101 or TGR-1202) or PI3Kγ/δ (IPI-145) inhibitors following antigen stimulation with hgp100, and then infused them into 5Gy total body irradiated B16F10 tumor bearing mice. We characterized the phenotype of the transferred product by flow cytometry and then assessed their tumor control by measuring the tumor area every other day with clippers. For metabolic assays we utilized the 2-NBDG glucose uptake dye and the real time energy flux analysis by seahorse.ResultsSole inhibition of PI3Kδ or PI3Kγ in vitro promoted greater tumor immunity and survival compared to dual inhibition. To understand how PI3Kδ or PI3Kγ blockade improved T cell therapy, we assessed their phenotype. CAL101 treatment produced more CD62LhiCD44lo T cells compared to IPI-459, while TGR-1202 enriched mostly CD62LhiCD44hi T cells. Because decreased T cell differentiation is associated with mitochondrial metabolism, we focused on CAL101 treated T cells to study their metabolism. We found that CAL101 decreased glucose uptake and increased mitochondrial respiration in vitro, indicating augmented mitochondrial function.ConclusionsThese findings indicate that blocking PI3Kδ is sufficient to mediate lasting tumor immunity of adoptively transferred T cells by preventing premature differentiation and improving mitochondrial fitness. Our data suggest that addition of CAL101 to ACT expansion protocols could greatly improve T cell therapies for solid tumors by preventing T cell differentiation and improving mitochondrial function.


Sign in / Sign up

Export Citation Format

Share Document