scholarly journals Recent Progress of TiO2-Based Anodes for Li Ion Batteries

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Yu Liu ◽  
Yefeng Yang

TiO2-based materials have been widely studied in the field of photocatalysis, sensors, and solar cells. Besides that, TiO2-based materials are of great interest for energy storage and conversion devices, in particular rechargeable lithium ion batteries (LIBs). TiO2has significant advantage due to its low volume change (<4%) during Li ion insertion/desertions process, short paths for fast lithium ion diffusion, and large exposed surface offering more lithium insertion channels. However, the relatively low theoretical capacity and electrical conductivity of TiO2greatly hampered its practical application. Various strategies have been developed to solve these problems, such as designing different nanostructured TiO2to improve electronic conductivity, coating or combining TiO2with carbonaceous materials, incorporating metal oxides to enhance its capacity, and doping with cationic or anionic dopants to form more open channels and active sites for Li ion transport. This review is devoted to the recent progress in enhancing the LIBs performance of TiO2with various synthetic strategies and architectures control. Based on the lithium storage mechanism, we will also bring forward the existing challenges for future exploitation and development of TiO2-based anodes in energy storage, which would guide the development for rationally and efficiently designing more efficient TiO2-based LIBs anodes.

2021 ◽  
Author(s):  
Chao Cai ◽  
Meiyu Song ◽  
Qixiang Ou ◽  
Jianmei Li ◽  
changsheng an

Abstract Alloy-type anodes materials possess broad prospects for excellent electrochemical property lithium-ion batteries owing to its high theoretical capacity and excellent electronic conductivity. However, this type electrode materials experience poor kinetics and tremendous volume collapse during the repeated lithiation-delithiation process. Herein, an efficient method to provide a fast transmission channel and suppress the volume collapse during the discharge/charge process by constructing the heterostructure between porous TiO2-B nanoblets and few-layer SnS2 nanosheets interface, which provides high-active sites for the nucleation and growth of SnS2 nanosheets, and inhibits the agglomeration of SnS2 nanosheets. Both experimental results and theoretical calculations definite that porous TiO2 nanobelts provides more chemical active sites for the adsorption and transmission of lithium ion and then effectively improve the stability the electrode structure. As a result, TiO2-B@SnS2 hybrid exhibits excellent rate and cycle performance. This work paves a way to design and construction of high performance alloy-type anode materials.


2016 ◽  
Vol 4 (18) ◽  
pp. 6972-6979 ◽  
Author(s):  
Beatriz Lopez-Bermudez ◽  
Wolfgang G. Zeier ◽  
Shiliang Zhou ◽  
Anna J. Lehner ◽  
Jerry Hu ◽  
...  

The development of new frameworks for solid electrolytes exhibiting fast Li-ion diffusion is critical for enabling new energy storage technologies.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1084 ◽  
Author(s):  
Quan Sun ◽  
Ying Huang ◽  
Shi Wu ◽  
Zhonghui Gao ◽  
Hang Liu ◽  
...  

Sn/Nitrogen-doped reduced graphene oxide (Sn@N-G) composites have been successfully synthesized via a facile method for lithium-ion batteries. Compared with the Sn or Sn/graphene anodes, the Sn@N-G anode exhibits a superb rate capability of 535 mAh g−1 at 2C and cycling stability up to 300 cycles at 0.5C. The improved lithium-storage performance of Sn@N-G anode could be ascribed to the effective graphene wrapping, which accommodates the large volume change of Sn during the charge–discharge process, while the nitrogen doping increases the electronic conductivity of graphene, as well as provides a large number of active sites as reservoirs for Li+ storage.


Author(s):  
E. Thauer ◽  
G. S. Zakharova ◽  
E. I. Andreikov ◽  
V. Adam ◽  
S. A. Wegener ◽  
...  

AbstractFor the first time, ZnO/C composites were synthesized using zinc glycerolate as a precursor through one-step calcination under a nitrogen atmosphere. The effect of the heat treatment conditions on the structure, composition, morphology as well as on the electrochemical properties regarding application in lithium-ion batteries are investigated. The products obtained by calcination of the precursor in nitrogen at 400—800 °C consist of zinc oxide nanoparticles and amorphous carbon that is in-situ generated from organic components of the glycerolate precursor. When used as anode material for lithium-ion batteries, the as-prepared ZnO/C composite synthesized at a calcination temperature of 700 °C delivers initial discharge and charge capacities of 1061 and 671 mAh g−1 at a current rate of 100 mA g−1 and hence 1.5 times more than bare ZnO, which reaches only 749/439 mAh g−1. The native carbon improves the conductivity, allowing efficient electronic conductivity and Li-ion diffusion. By means of ex-situ XRD studies a two-step storage mechanism is proven.


Nanoscale ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 8858-8866
Author(s):  
Qiwang Jiang ◽  
Jie Wang ◽  
Yan Jiang ◽  
Long Li ◽  
Xingzhong Cao ◽  
...  

Selenium vacancy-rich and carbon-free VSe2 nanosheets achieve excellent lithium storage performance due to significantly enhanced lithium-ion diffusion rate and electrochemical active sites induced by the Se vacancies.


Author(s):  
Mohammad Arif Ishtiaque Shuvo ◽  
Md. Ashiqur Rahaman Khan ◽  
Miguel Mendoza ◽  
Matthew Garcia ◽  
Yirong Lin

The study of graphene has become one of the most exhilarating topics in both academia and industry for being highly promising in various applications. Because of its excellent mechanical, electrical, thermal and nontoxic properties, graphene has shown promising application in energy storage devices such as lithium-ion-battery (LIB), super capacitor and solar cell. In lithium ion battery, graphite is the most commonly used material as anode. However, due to the limited specific surface area of graphite materials, the diffusion of the Li ions in the anode graphite is relatively slow, leading to limited energy storage density. In order to further increase the capacity, nano-structured materials have been extensively studied due to its potential in reducing Li-ion diffusion pathway. To date, one of the most promising approaches to improve the Li-ion diffusion rate is to introduce hybrid nanostructured electrodes that connect the nonconductive high surface area nanowire with nanostructured carbon materials. While there have been several research efforts investigated to fabricate nanowire-graphene hybrids, all the them were focused on randomly distributed nanostructures thus the LIB performance enhancement was limited. Therefore, this paper will introduce a novel hybrid structure with vertically aligned nanowire on graphene aerogel aiming to further increase the performance of LIB. The aligned nanowire array provides a higher specific surface area and could lead to high electrodeelectrolyte contact area and fast lithium ion diffusion rate. While the graphene aerogel structure is electrically conductive and mechanically robust, as well as has low specific density. The developed nanowire/graphene hybrid structure could have the potential to enhance the specific capacity and charge-discharge rate. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) measurements were used for the initial characterization of this nanowire/graphene aerogel hybrid material system.


RSC Advances ◽  
2018 ◽  
Vol 8 (34) ◽  
pp. 19335-19340 ◽  
Author(s):  
Cunliang Zhang ◽  
Yanmei Liu ◽  
Jian Li ◽  
Kai Zhu ◽  
Zhe Chen ◽  
...  

Li3V2(PO4)3@Carbon nanocrystals exhibit superior lithium storage properties due to the shortened lithium-ion diffusion length and the enhanced surface electronic conductivity.


2019 ◽  
Vol 14 (23) ◽  
pp. 4289-4295 ◽  
Author(s):  
Chunfeng Meng ◽  
Tianhui Chen ◽  
Chun Fang ◽  
Yunhui Huang ◽  
Pinfei Hu ◽  
...  

2012 ◽  
Vol 560-561 ◽  
pp. 499-505 ◽  
Author(s):  
George Ting Kuo Fey ◽  
Cyun Jhe Yan ◽  
Yi Chuan Lin ◽  
Kai Pin Huang ◽  
Yung Da Cho ◽  
...  

This Olivine LiFe1-xCaxPO4/C composites (x=0 - 0.014) were synthesized by a solid-state method using sebasic acid as a carbon source. The structure and electrochemical properties of the LiFe1-xCaxPO4/C compounds were studied. The X-ray diffractometer (XRD) results indicated that Ca2+ doping did not affect the structure of the samples, but the unit cell volume of doped sample are slightly increased. Electrochemical measurements showed that the LiFe0.99Ca0.01PO4/C composite delivered a discharge capacity of 149 mAh g-1 at a 0.2 C-rate between 4.0 and 2.8 V, probably due to the significant improvement of electronic conductivity and Li+ ion diffusion. Besides, the cell can sustain a 20 C-rate, and this rate capability is equivalent to charge or discharge in 3 min.


2019 ◽  
Vol 1 (12) ◽  
pp. 4688-4691 ◽  
Author(s):  
Lingzhi Guo ◽  
Jinfeng Sun ◽  
Xuan Sun ◽  
Jinyang Zhang ◽  
Linrui Hou ◽  
...  

1D conductive Ni-CAT nanorods with a superb Li+ diffusion coefficient and electronic conductivity exhibited remarkable electrochemical lithium storage properties, and the charge-storage mechanism involved was rationally put forward.


Sign in / Sign up

Export Citation Format

Share Document